/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.hash;

import static com.google.common.base.Preconditions.checkArgument;

import java.security.MessageDigest;
import java.util.Iterator;
import java.util.zip.Adler32;
import java.util.zip.CRC32;
import java.util.zip.Checksum;

import javax.annotation.Nullable;

import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Supplier;

/**
 * Static methods to obtain {@link HashFunction} instances, and other static
 * hashing-related utilities.
 *
 * <p>
 * A comparison of the various hash functions can be found
 * <a href="http://goo.gl/jS7HH">here</a>.
 *
 * @author Kevin Bourrillion
 * @author Dimitris Andreou
 * @author Kurt Alfred Kluever
 * @since 11.0
 */
@Beta
public final class Hashing {
	/**
	 * Returns a general-purpose, <b>temporary-use</b>, non-cryptographic hash
	 * function. The algorithm the returned function implements is unspecified and
	 * subject to change without notice.
	 *
	 * <p>
	 * <b>Warning:</b> a new random seed for these functions is chosen each time the
	 * {@code
	 * Hashing} class is loaded. <b>Do not use this method</b> if hash codes may
	 * escape the current process in any way, for example being sent over RPC, or
	 * saved to disk.
	 *
	 * <p>
	 * Repeated calls to this method on the same loaded {@code Hashing} class, using
	 * the same value for {@code minimumBits}, will return identically-behaving
	 * {@link HashFunction} instances.
	 *
	 * @param minimumBits a positive integer (can be arbitrarily large)
	 * @return a hash function, described above, that produces hash codes of length
	 *         {@code
	 *     minimumBits} or greater
	 */
	public static HashFunction goodFastHash(int minimumBits) {
		int bits = checkPositiveAndMakeMultipleOf32(minimumBits);

		if (bits == 32) {
			return Murmur3_32Holder.GOOD_FAST_HASH_FUNCTION_32;
		}
		if (bits <= 128) {
			return Murmur3_128Holder.GOOD_FAST_HASH_FUNCTION_128;
		}

		// Otherwise, join together some 128-bit murmur3s
		int hashFunctionsNeeded = (bits + 127) / 128;
		HashFunction[] hashFunctions = new HashFunction[hashFunctionsNeeded];
		hashFunctions[0] = Murmur3_128Holder.GOOD_FAST_HASH_FUNCTION_128;
		int seed = GOOD_FAST_HASH_SEED;
		for (int i = 1; i < hashFunctionsNeeded; i++) {
			seed += 1500450271; // a prime; shouldn't matter
			hashFunctions[i] = murmur3_128(seed);
		}
		return new ConcatenatedHashFunction(hashFunctions);
	}

	/**
	 * Used to randomize {@link #goodFastHash} instances, so that programs which
	 * persist anything dependent on the hash codes they produce will fail sooner.
	 */
	private static final int GOOD_FAST_HASH_SEED = (int) System.currentTimeMillis();

	/**
	 * Returns a hash function implementing the
	 * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp"> 32-bit
	 * murmur3 algorithm, x86 variant</a> (little-endian variant), using the given
	 * seed value.
	 *
	 * <p>
	 * The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A).
	 */
	public static HashFunction murmur3_32(int seed) {
		return new Murmur3_32HashFunction(seed);
	}

	/**
	 * Returns a hash function implementing the
	 * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp"> 32-bit
	 * murmur3 algorithm, x86 variant</a> (little-endian variant), using a seed
	 * value of zero.
	 *
	 * <p>
	 * The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A).
	 */
	public static HashFunction murmur3_32() {
		return Murmur3_32Holder.MURMUR3_32;
	}

	private static class Murmur3_32Holder {
		static final HashFunction MURMUR3_32 = new Murmur3_32HashFunction(0);

		/** Returned by {@link #goodFastHash} when {@code minimumBits <= 32}. */
		static final HashFunction GOOD_FAST_HASH_FUNCTION_32 = murmur3_32(GOOD_FAST_HASH_SEED);
	}

	/**
	 * Returns a hash function implementing the
	 * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp"> 128-bit
	 * murmur3 algorithm, x64 variant</a> (little-endian variant), using the given
	 * seed value.
	 *
	 * <p>
	 * The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F).
	 */
	public static HashFunction murmur3_128(int seed) {
		return new Murmur3_128HashFunction(seed);
	}

	/**
	 * Returns a hash function implementing the
	 * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp"> 128-bit
	 * murmur3 algorithm, x64 variant</a> (little-endian variant), using a seed
	 * value of zero.
	 *
	 * <p>
	 * The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F).
	 */
	public static HashFunction murmur3_128() {
		return Murmur3_128Holder.MURMUR3_128;
	}

	private static class Murmur3_128Holder {
		static final HashFunction MURMUR3_128 = new Murmur3_128HashFunction(0);

		/** Returned by {@link #goodFastHash} when {@code 32 < minimumBits <= 128}. */
		static final HashFunction GOOD_FAST_HASH_FUNCTION_128 = murmur3_128(GOOD_FAST_HASH_SEED);
	}

	/**
	 * Returns a hash function implementing the
	 * <a href="https://131002.net/siphash/">64-bit SipHash-2-4 algorithm</a> using
	 * a seed value of {@code k = 00 01 02 ...}.
	 *
	 * @since 15.0
	 */
	public static HashFunction sipHash24() {
		return SipHash24Holder.SIP_HASH_24;
	}

	private static class SipHash24Holder {
		static final HashFunction SIP_HASH_24 = new SipHashFunction(2, 4, 0x0706050403020100L, 0x0f0e0d0c0b0a0908L);
	}

	/**
	 * Returns a hash function implementing the
	 * <a href="https://131002.net/siphash/">64-bit SipHash-2-4 algorithm</a> using
	 * the given seed.
	 *
	 * @since 15.0
	 */
	public static HashFunction sipHash24(long k0, long k1) {
		return new SipHashFunction(2, 4, k0, k1);
	}

	/**
	 * Returns a hash function implementing the MD5 hash algorithm (128 hash bits)
	 * by delegating to the MD5 {@link MessageDigest}.
	 */
	public static HashFunction md5() {
		return Md5Holder.MD5;
	}

	private static class Md5Holder {
		static final HashFunction MD5 = new MessageDigestHashFunction("MD5", "Hashing.md5()");
	}

	/**
	 * Returns a hash function implementing the SHA-1 algorithm (160 hash bits) by
	 * delegating to the SHA-1 {@link MessageDigest}.
	 */
	public static HashFunction sha1() {
		return Sha1Holder.SHA_1;
	}

	private static class Sha1Holder {
		static final HashFunction SHA_1 = new MessageDigestHashFunction("SHA-1", "Hashing.sha1()");
	}

	/**
	 * Returns a hash function implementing the SHA-256 algorithm (256 hash bits) by
	 * delegating to the SHA-256 {@link MessageDigest}.
	 */
	public static HashFunction sha256() {
		return Sha256Holder.SHA_256;
	}

	private static class Sha256Holder {
		static final HashFunction SHA_256 = new MessageDigestHashFunction("SHA-256", "Hashing.sha256()");
	}

	/**
	 * Returns a hash function implementing the SHA-512 algorithm (512 hash bits) by
	 * delegating to the SHA-512 {@link MessageDigest}.
	 */
	public static HashFunction sha512() {
		return Sha512Holder.SHA_512;
	}

	private static class Sha512Holder {
		static final HashFunction SHA_512 = new MessageDigestHashFunction("SHA-512", "Hashing.sha512()");
	}

	/**
	 * Returns a hash function implementing the CRC-32 checksum algorithm (32 hash
	 * bits) by delegating to the {@link CRC32} {@link Checksum}.
	 *
	 * <p>
	 * To get the {@code long} value equivalent to {@link Checksum#getValue()} for a
	 * {@code HashCode} produced by this function, use {@link HashCode#padToLong()}.
	 *
	 * @since 14.0
	 */
	public static HashFunction crc32() {
		return Crc32Holder.CRC_32;
	}

	private static class Crc32Holder {
		static final HashFunction CRC_32 = checksumHashFunction(ChecksumType.CRC_32, "Hashing.crc32()");
	}

	/**
	 * Returns a hash function implementing the Adler-32 checksum algorithm (32 hash
	 * bits) by delegating to the {@link Adler32} {@link Checksum}.
	 *
	 * <p>
	 * To get the {@code long} value equivalent to {@link Checksum#getValue()} for a
	 * {@code HashCode} produced by this function, use {@link HashCode#padToLong()}.
	 *
	 * @since 14.0
	 */
	public static HashFunction adler32() {
		return Adler32Holder.ADLER_32;
	}

	private static class Adler32Holder {
		static final HashFunction ADLER_32 = checksumHashFunction(ChecksumType.ADLER_32, "Hashing.adler32()");
	}

	private static HashFunction checksumHashFunction(ChecksumType type, String toString) {
		return new ChecksumHashFunction(type, type.bits, toString);
	}

	enum ChecksumType implements Supplier<Checksum> {
		CRC_32(32) {
			@Override
			public Checksum get() {
				return new CRC32();
			}
		},
		ADLER_32(32) {
			@Override
			public Checksum get() {
				return new Adler32();
			}
		};

		private final int bits;

		ChecksumType(int bits) {
			this.bits = bits;
		}

		@Override
		public abstract Checksum get();
	}

	/**
	 * Assigns to {@code hashCode} a "bucket" in the range {@code [0, buckets)}, in
	 * a uniform manner that minimizes the need for remapping as {@code buckets}
	 * grows. That is, {@code consistentHash(h, n)} equals:
	 *
	 * <ul>
	 * <li>{@code n - 1}, with approximate probability {@code 1/n}
	 * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n})
	 * </ul>
	 *
	 * <p>
	 * See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">wikipedia
	 * article on consistent hashing</a> for more information.
	 */
	public static int consistentHash(HashCode hashCode, int buckets) {
		return consistentHash(hashCode.padToLong(), buckets);
	}

	/**
	 * Assigns to {@code input} a "bucket" in the range {@code [0, buckets)}, in a
	 * uniform manner that minimizes the need for remapping as {@code buckets}
	 * grows. That is, {@code consistentHash(h, n)} equals:
	 *
	 * <ul>
	 * <li>{@code n - 1}, with approximate probability {@code 1/n}
	 * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n})
	 * </ul>
	 *
	 * <p>
	 * See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">wikipedia
	 * article on consistent hashing</a> for more information.
	 */
	public static int consistentHash(long input, int buckets) {
		checkArgument(buckets > 0, "buckets must be positive: %s", buckets);
		LinearCongruentialGenerator generator = new LinearCongruentialGenerator(input);
		int candidate = 0;
		int next;

		// Jump from bucket to bucket until we go out of range
		while (true) {
			next = (int) ((candidate + 1) / generator.nextDouble());
			if (next >= 0 && next < buckets) {
				candidate = next;
			} else {
				return candidate;
			}
		}
	}

	/**
	 * Returns a hash code, having the same bit length as each of the input hash
	 * codes, that combines the information of these hash codes in an ordered
	 * fashion. That is, whenever two equal hash codes are produced by two calls to
	 * this method, it is <i>as likely as possible</i> that each was computed from
	 * the <i>same</i> input hash codes in the <i>same</i> order.
	 *
	 * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash
	 *                                  codes do not all have the same bit length
	 */
	public static HashCode combineOrdered(Iterable<HashCode> hashCodes) {
		Iterator<HashCode> iterator = hashCodes.iterator();
		checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine.");
		int bits = iterator.next().bits();
		byte[] resultBytes = new byte[bits / 8];
		for (HashCode hashCode : hashCodes) {
			byte[] nextBytes = hashCode.asBytes();
			checkArgument(nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length.");
			for (int i = 0; i < nextBytes.length; i++) {
				resultBytes[i] = (byte) (resultBytes[i] * 37 ^ nextBytes[i]);
			}
		}
		return HashCode.fromBytesNoCopy(resultBytes);
	}

	/**
	 * Returns a hash code, having the same bit length as each of the input hash
	 * codes, that combines the information of these hash codes in an unordered
	 * fashion. That is, whenever two equal hash codes are produced by two calls to
	 * this method, it is <i>as likely as possible</i> that each was computed from
	 * the <i>same</i> input hash codes in <i>some</i> order.
	 *
	 * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash
	 *                                  codes do not all have the same bit length
	 */
	public static HashCode combineUnordered(Iterable<HashCode> hashCodes) {
		Iterator<HashCode> iterator = hashCodes.iterator();
		checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine.");
		byte[] resultBytes = new byte[iterator.next().bits() / 8];
		for (HashCode hashCode : hashCodes) {
			byte[] nextBytes = hashCode.asBytes();
			checkArgument(nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length.");
			for (int i = 0; i < nextBytes.length; i++) {
				resultBytes[i] += nextBytes[i];
			}
		}
		return HashCode.fromBytesNoCopy(resultBytes);
	}

	/**
	 * Checks that the passed argument is positive, and ceils it to a multiple of
	 * 32.
	 */
	static int checkPositiveAndMakeMultipleOf32(int bits) {
		checkArgument(bits > 0, "Number of bits must be positive");
		return (bits + 31) & ~31;
	}

	// TODO(kevinb): Maybe expose this class via a static Hashing method?
	@VisibleForTesting
	static final class ConcatenatedHashFunction extends AbstractCompositeHashFunction {
		private final int bits;

		ConcatenatedHashFunction(HashFunction... functions) {
			super(functions);
			int bitSum = 0;
			for (HashFunction function : functions) {
				bitSum += function.bits();
			}
			this.bits = bitSum;
		}

		@Override
		HashCode makeHash(Hasher[] hashers) {
			byte[] bytes = new byte[bits / 8];
			int i = 0;
			for (Hasher hasher : hashers) {
				HashCode newHash = hasher.hash();
				i += newHash.writeBytesTo(bytes, i, newHash.bits() / 8);
			}
			return HashCode.fromBytesNoCopy(bytes);
		}

		@Override
		public int bits() {
			return bits;
		}

		@Override
		public boolean equals(@Nullable Object object) {
			if (object instanceof ConcatenatedHashFunction) {
				ConcatenatedHashFunction other = (ConcatenatedHashFunction) object;
				if (bits != other.bits || functions.length != other.functions.length) {
					return false;
				}
				for (int i = 0; i < functions.length; i++) {
					if (!functions[i].equals(other.functions[i])) {
						return false;
					}
				}
				return true;
			}
			return false;
		}

		@Override
		public int hashCode() {
			int hash = bits;
			for (HashFunction function : functions) {
				hash ^= function.hashCode();
			}
			return hash;
		}
	}

	/**
	 * Linear CongruentialGenerator to use for consistent hashing. See
	 * http://en.wikipedia.org/wiki/Linear_congruential_generator
	 */
	private static final class LinearCongruentialGenerator {
		private long state;

		public LinearCongruentialGenerator(long seed) {
			this.state = seed;
		}

		public double nextDouble() {
			state = 2862933555777941757L * state + 1;
			return ((double) ((int) (state >>> 33) + 1)) / (0x1.0p31);
		}
	}

	private Hashing() {
	}
}