/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.Queue;
import java.util.RandomAccess;
import java.util.Set;

import javax.annotation.Nullable;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Function;
import com.google.common.base.Optional;
import com.google.common.base.Predicate;

/**
 * This class contains static utility methods that operate on or return objects
 * of type {@code Iterable}. Except as noted, each method has a corresponding
 * {@link Iterator}-based method in the {@link Iterators} class.
 *
 * <p>
 * <i>Performance notes:</i> Unless otherwise noted, all of the iterables
 * produced in this class are <i>lazy</i>, which means that their iterators only
 * advance the backing iteration when absolutely necessary.
 *
 * <p>
 * See the Guava User Guide article on <a href=
 * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Iterables">
 * {@code Iterables}</a>.
 *
 * @author Kevin Bourrillion
 * @author Jared Levy
 * @since 2.0 (imported from Google Collections Library)
 */
@GwtCompatible(emulated = true)
public final class Iterables {
	private Iterables() {
	}

	/** Returns an unmodifiable view of {@code iterable}. */
	public static <T> Iterable<T> unmodifiableIterable(final Iterable<T> iterable) {
		checkNotNull(iterable);
		if (iterable instanceof UnmodifiableIterable || iterable instanceof ImmutableCollection) {
			return iterable;
		}
		return new UnmodifiableIterable<T>(iterable);
	}

	/**
	 * Simply returns its argument.
	 *
	 * @deprecated no need to use this
	 * @since 10.0
	 */
	@Deprecated
	public static <E> Iterable<E> unmodifiableIterable(ImmutableCollection<E> iterable) {
		return checkNotNull(iterable);
	}

	private static final class UnmodifiableIterable<T> extends FluentIterable<T> {
		private final Iterable<T> iterable;

		private UnmodifiableIterable(Iterable<T> iterable) {
			this.iterable = iterable;
		}

		@Override
		public Iterator<T> iterator() {
			return Iterators.unmodifiableIterator(iterable.iterator());
		}

		@Override
		public String toString() {
			return iterable.toString();
		}
		// no equals and hashCode; it would break the contract!
	}

	/**
	 * Returns the number of elements in {@code iterable}.
	 */
	public static int size(Iterable<?> iterable) {
		return (iterable instanceof Collection) ? ((Collection<?>) iterable).size()
				: Iterators.size(iterable.iterator());
	}

	/**
	 * Returns {@code true} if {@code iterable} contains any object for which
	 * {@code equals(element)} is true.
	 */
	public static boolean contains(Iterable<?> iterable, @Nullable Object element) {
		if (iterable instanceof Collection) {
			Collection<?> collection = (Collection<?>) iterable;
			return Collections2.safeContains(collection, element);
		}
		return Iterators.contains(iterable.iterator(), element);
	}

	/**
	 * Removes, from an iterable, every element that belongs to the provided
	 * collection.
	 *
	 * <p>
	 * This method calls {@link Collection#removeAll} if {@code iterable} is a
	 * collection, and {@link Iterators#removeAll} otherwise.
	 *
	 * @param removeFrom       the iterable to (potentially) remove elements from
	 * @param elementsToRemove the elements to remove
	 * @return {@code true} if any element was removed from {@code iterable}
	 */
	public static boolean removeAll(Iterable<?> removeFrom, Collection<?> elementsToRemove) {
		return (removeFrom instanceof Collection)
				? ((Collection<?>) removeFrom).removeAll(checkNotNull(elementsToRemove))
				: Iterators.removeAll(removeFrom.iterator(), elementsToRemove);
	}

	/**
	 * Removes, from an iterable, every element that does not belong to the provided
	 * collection.
	 *
	 * <p>
	 * This method calls {@link Collection#retainAll} if {@code iterable} is a
	 * collection, and {@link Iterators#retainAll} otherwise.
	 *
	 * @param removeFrom       the iterable to (potentially) remove elements from
	 * @param elementsToRetain the elements to retain
	 * @return {@code true} if any element was removed from {@code iterable}
	 */
	public static boolean retainAll(Iterable<?> removeFrom, Collection<?> elementsToRetain) {
		return (removeFrom instanceof Collection)
				? ((Collection<?>) removeFrom).retainAll(checkNotNull(elementsToRetain))
				: Iterators.retainAll(removeFrom.iterator(), elementsToRetain);
	}

	/**
	 * Removes, from an iterable, every element that satisfies the provided
	 * predicate.
	 *
	 * @param removeFrom the iterable to (potentially) remove elements from
	 * @param predicate  a predicate that determines whether an element should be
	 *                   removed
	 * @return {@code true} if any elements were removed from the iterable
	 *
	 * @throws UnsupportedOperationException if the iterable does not support
	 *                                       {@code remove()}.
	 * @since 2.0
	 */
	public static <T> boolean removeIf(Iterable<T> removeFrom, Predicate<? super T> predicate) {
		if (removeFrom instanceof RandomAccess && removeFrom instanceof List) {
			return removeIfFromRandomAccessList((List<T>) removeFrom, checkNotNull(predicate));
		}
		return Iterators.removeIf(removeFrom.iterator(), predicate);
	}

	private static <T> boolean removeIfFromRandomAccessList(List<T> list, Predicate<? super T> predicate) {
		// Note: Not all random access lists support set() so we need to deal with
		// those that don't and attempt the slower remove() based solution.
		int from = 0;
		int to = 0;

		for (; from < list.size(); from++) {
			T element = list.get(from);
			if (!predicate.apply(element)) {
				if (from > to) {
					try {
						list.set(to, element);
					} catch (UnsupportedOperationException e) {
						slowRemoveIfForRemainingElements(list, predicate, to, from);
						return true;
					}
				}
				to++;
			}
		}

		// Clear the tail of any remaining items
		list.subList(to, list.size()).clear();
		return from != to;
	}

	private static <T> void slowRemoveIfForRemainingElements(List<T> list, Predicate<? super T> predicate, int to,
			int from) {
		// Here we know that:
		// * (to < from) and that both are valid indices.
		// * Everything with (index < to) should be kept.
		// * Everything with (to <= index < from) should be removed.
		// * The element with (index == from) should be kept.
		// * Everything with (index > from) has not been checked yet.

		// Check from the end of the list backwards (minimize expected cost of
		// moving elements when remove() is called). Stop before 'from' because
		// we already know that should be kept.
		for (int n = list.size() - 1; n > from; n--) {
			if (predicate.apply(list.get(n))) {
				list.remove(n);
			}
		}
		// And now remove everything in the range [to, from) (going backwards).
		for (int n = from - 1; n >= to; n--) {
			list.remove(n);
		}
	}

	/**
	 * Removes and returns the first matching element, or returns {@code null} if
	 * there is none.
	 */
	@Nullable
	static <T> T removeFirstMatching(Iterable<T> removeFrom, Predicate<? super T> predicate) {
		checkNotNull(predicate);
		Iterator<T> iterator = removeFrom.iterator();
		while (iterator.hasNext()) {
			T next = iterator.next();
			if (predicate.apply(next)) {
				iterator.remove();
				return next;
			}
		}
		return null;
	}

	/**
	 * Determines whether two iterables contain equal elements in the same order.
	 * More specifically, this method returns {@code true} if {@code iterable1} and
	 * {@code iterable2} contain the same number of elements and every element of
	 * {@code iterable1} is equal to the corresponding element of {@code iterable2}.
	 */
	public static boolean elementsEqual(Iterable<?> iterable1, Iterable<?> iterable2) {
		if (iterable1 instanceof Collection && iterable2 instanceof Collection) {
			Collection<?> collection1 = (Collection<?>) iterable1;
			Collection<?> collection2 = (Collection<?>) iterable2;
			if (collection1.size() != collection2.size()) {
				return false;
			}
		}
		return Iterators.elementsEqual(iterable1.iterator(), iterable2.iterator());
	}

	/**
	 * Returns a string representation of {@code iterable}, with the format {@code
	 * [e1, e2, ..., en]} (that is, identical to {@link java.util.Arrays
	 * Arrays}{@code .toString(Iterables.toArray(iterable))}). Note that for
	 * <i>most</i> implementations of {@link Collection}, {@code
	 * collection.toString()} also gives the same result, but that behavior is not
	 * generally guaranteed.
	 */
	public static String toString(Iterable<?> iterable) {
		return Iterators.toString(iterable.iterator());
	}

	/**
	 * Returns the single element contained in {@code iterable}.
	 *
	 * @throws NoSuchElementException   if the iterable is empty
	 * @throws IllegalArgumentException if the iterable contains multiple elements
	 */
	public static <T> T getOnlyElement(Iterable<T> iterable) {
		return Iterators.getOnlyElement(iterable.iterator());
	}

	/**
	 * Returns the single element contained in {@code iterable}, or {@code
	 * defaultValue} if the iterable is empty.
	 *
	 * @throws IllegalArgumentException if the iterator contains multiple elements
	 */
	@Nullable
	public static <T> T getOnlyElement(Iterable<? extends T> iterable, @Nullable T defaultValue) {
		return Iterators.getOnlyElement(iterable.iterator(), defaultValue);
	}

	/**
	 * Copies an iterable's elements into an array.
	 *
	 * @param iterable the iterable to copy
	 * @param type     the type of the elements
	 * @return a newly-allocated array into which all the elements of the iterable
	 *         have been copied
	 */
	@GwtIncompatible("Array.newInstance(Class, int)")
	public static <T> T[] toArray(Iterable<? extends T> iterable, Class<T> type) {
		Collection<? extends T> collection = toCollection(iterable);
		T[] array = ObjectArrays.newArray(type, collection.size());
		return collection.toArray(array);
	}

	/**
	 * Copies an iterable's elements into an array.
	 *
	 * @param iterable the iterable to copy
	 * @return a newly-allocated array into which all the elements of the iterable
	 *         have been copied
	 */
	static Object[] toArray(Iterable<?> iterable) {
		return toCollection(iterable).toArray();
	}

	/**
	 * Converts an iterable into a collection. If the iterable is already a
	 * collection, it is returned. Otherwise, an {@link java.util.ArrayList} is
	 * created with the contents of the iterable in the same iteration order.
	 */
	private static <E> Collection<E> toCollection(Iterable<E> iterable) {
		return (iterable instanceof Collection) ? (Collection<E>) iterable : Lists.newArrayList(iterable.iterator());
	}

	/**
	 * Adds all elements in {@code iterable} to {@code collection}.
	 *
	 * @return {@code true} if {@code collection} was modified as a result of this
	 *         operation.
	 */
	public static <T> boolean addAll(Collection<T> addTo, Iterable<? extends T> elementsToAdd) {
		if (elementsToAdd instanceof Collection) {
			Collection<? extends T> c = Collections2.cast(elementsToAdd);
			return addTo.addAll(c);
		}
		return Iterators.addAll(addTo, checkNotNull(elementsToAdd).iterator());
	}

	/**
	 * Returns the number of elements in the specified iterable that equal the
	 * specified object. This implementation avoids a full iteration when the
	 * iterable is a {@link Multiset} or {@link Set}.
	 *
	 * @see Collections#frequency
	 */
	public static int frequency(Iterable<?> iterable, @Nullable Object element) {
		if ((iterable instanceof Multiset)) {
			return ((Multiset<?>) iterable).count(element);
		} else if ((iterable instanceof Set)) {
			return ((Set<?>) iterable).contains(element) ? 1 : 0;
		}
		return Iterators.frequency(iterable.iterator(), element);
	}

	/**
	 * Returns an iterable whose iterators cycle indefinitely over the elements of
	 * {@code iterable}.
	 *
	 * <p>
	 * That iterator supports {@code remove()} if {@code iterable.iterator()} does.
	 * After {@code remove()} is called, subsequent cycles omit the removed element,
	 * which is no longer in {@code iterable}. The iterator's {@code hasNext()}
	 * method returns {@code true} until {@code iterable} is empty.
	 *
	 * <p>
	 * <b>Warning:</b> Typical uses of the resulting iterator may produce an
	 * infinite loop. You should use an explicit {@code break} or be certain that
	 * you will eventually remove all the elements.
	 *
	 * <p>
	 * To cycle over the iterable {@code n} times, use the following:
	 * {@code Iterables.concat(Collections.nCopies(n, iterable))}
	 */
	public static <T> Iterable<T> cycle(final Iterable<T> iterable) {
		checkNotNull(iterable);
		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.cycle(iterable);
			}

			@Override
			public String toString() {
				return iterable.toString() + " (cycled)";
			}
		};
	}

	/**
	 * Returns an iterable whose iterators cycle indefinitely over the provided
	 * elements.
	 *
	 * <p>
	 * After {@code remove} is invoked on a generated iterator, the removed element
	 * will no longer appear in either that iterator or any other iterator created
	 * from the same source iterable. That is, this method behaves exactly as
	 * {@code Iterables.cycle(Lists.newArrayList(elements))}. The iterator's
	 * {@code hasNext} method returns {@code true} until all of the original
	 * elements have been removed.
	 *
	 * <p>
	 * <b>Warning:</b> Typical uses of the resulting iterator may produce an
	 * infinite loop. You should use an explicit {@code break} or be certain that
	 * you will eventually remove all the elements.
	 *
	 * <p>
	 * To cycle over the elements {@code n} times, use the following:
	 * {@code Iterables.concat(Collections.nCopies(n, Arrays.asList(elements)))}
	 */
	public static <T> Iterable<T> cycle(T... elements) {
		return cycle(Lists.newArrayList(elements));
	}

	/**
	 * Combines two iterables into a single iterable. The returned iterable has an
	 * iterator that traverses the elements in {@code a}, followed by the elements
	 * in {@code b}. The source iterators are not polled until necessary.
	 *
	 * <p>
	 * The returned iterable's iterator supports {@code remove()} when the
	 * corresponding input iterator supports it.
	 */
	public static <T> Iterable<T> concat(Iterable<? extends T> a, Iterable<? extends T> b) {
		return concat(ImmutableList.of(a, b));
	}

	/**
	 * Combines three iterables into a single iterable. The returned iterable has an
	 * iterator that traverses the elements in {@code a}, followed by the elements
	 * in {@code b}, followed by the elements in {@code c}. The source iterators are
	 * not polled until necessary.
	 *
	 * <p>
	 * The returned iterable's iterator supports {@code remove()} when the
	 * corresponding input iterator supports it.
	 */
	public static <T> Iterable<T> concat(Iterable<? extends T> a, Iterable<? extends T> b, Iterable<? extends T> c) {
		return concat(ImmutableList.of(a, b, c));
	}

	/**
	 * Combines four iterables into a single iterable. The returned iterable has an
	 * iterator that traverses the elements in {@code a}, followed by the elements
	 * in {@code b}, followed by the elements in {@code c}, followed by the elements
	 * in {@code d}. The source iterators are not polled until necessary.
	 *
	 * <p>
	 * The returned iterable's iterator supports {@code remove()} when the
	 * corresponding input iterator supports it.
	 */
	public static <T> Iterable<T> concat(Iterable<? extends T> a, Iterable<? extends T> b, Iterable<? extends T> c,
			Iterable<? extends T> d) {
		return concat(ImmutableList.of(a, b, c, d));
	}

	/**
	 * Combines multiple iterables into a single iterable. The returned iterable has
	 * an iterator that traverses the elements of each iterable in {@code inputs}.
	 * The input iterators are not polled until necessary.
	 *
	 * <p>
	 * The returned iterable's iterator supports {@code remove()} when the
	 * corresponding input iterator supports it.
	 *
	 * @throws NullPointerException if any of the provided iterables is null
	 */
	public static <T> Iterable<T> concat(Iterable<? extends T>... inputs) {
		return concat(ImmutableList.copyOf(inputs));
	}

	/**
	 * Combines multiple iterables into a single iterable. The returned iterable has
	 * an iterator that traverses the elements of each iterable in {@code inputs}.
	 * The input iterators are not polled until necessary.
	 *
	 * <p>
	 * The returned iterable's iterator supports {@code remove()} when the
	 * corresponding input iterator supports it. The methods of the returned
	 * iterable may throw {@code NullPointerException} if any of the input iterators
	 * is null.
	 */
	public static <T> Iterable<T> concat(final Iterable<? extends Iterable<? extends T>> inputs) {
		checkNotNull(inputs);
		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.concat(iterators(inputs));
			}
		};
	}

	/**
	 * Returns an iterator over the iterators of the given iterables.
	 */
	private static <T> Iterator<Iterator<? extends T>> iterators(Iterable<? extends Iterable<? extends T>> iterables) {
		return new TransformedIterator<Iterable<? extends T>, Iterator<? extends T>>(iterables.iterator()) {
			@Override
			Iterator<? extends T> transform(Iterable<? extends T> from) {
				return from.iterator();
			}
		};
	}

	/**
	 * Divides an iterable into unmodifiable sublists of the given size (the final
	 * iterable may be smaller). For example, partitioning an iterable containing
	 * {@code [a, b, c, d, e]} with a partition size of 3 yields {@code
	 * [[a, b, c], [d, e]]} -- an outer iterable containing two inner lists of three
	 * and two elements, all in the original order.
	 *
	 * <p>
	 * Iterators returned by the returned iterable do not support the
	 * {@link Iterator#remove()} method. The returned lists implement
	 * {@link RandomAccess}, whether or not the input list does.
	 *
	 * <p>
	 * <b>Note:</b> if {@code iterable} is a {@link List}, use
	 * {@link Lists#partition(List, int)} instead.
	 *
	 * @param iterable the iterable to return a partitioned view of
	 * @param size     the desired size of each partition (the last may be smaller)
	 * @return an iterable of unmodifiable lists containing the elements of {@code
	 *     iterable} divided into partitions
	 * @throws IllegalArgumentException if {@code size} is nonpositive
	 */
	public static <T> Iterable<List<T>> partition(final Iterable<T> iterable, final int size) {
		checkNotNull(iterable);
		checkArgument(size > 0);
		return new FluentIterable<List<T>>() {
			@Override
			public Iterator<List<T>> iterator() {
				return Iterators.partition(iterable.iterator(), size);
			}
		};
	}

	/**
	 * Divides an iterable into unmodifiable sublists of the given size, padding the
	 * final iterable with null values if necessary. For example, partitioning an
	 * iterable containing {@code [a, b, c, d, e]} with a partition size of 3 yields
	 * {@code [[a, b, c], [d, e, null]]} -- an outer iterable containing two inner
	 * lists of three elements each, all in the original order.
	 *
	 * <p>
	 * Iterators returned by the returned iterable do not support the
	 * {@link Iterator#remove()} method.
	 *
	 * @param iterable the iterable to return a partitioned view of
	 * @param size     the desired size of each partition
	 * @return an iterable of unmodifiable lists containing the elements of {@code
	 *     iterable} divided into partitions (the final iterable may have trailing
	 *         null elements)
	 * @throws IllegalArgumentException if {@code size} is nonpositive
	 */
	public static <T> Iterable<List<T>> paddedPartition(final Iterable<T> iterable, final int size) {
		checkNotNull(iterable);
		checkArgument(size > 0);
		return new FluentIterable<List<T>>() {
			@Override
			public Iterator<List<T>> iterator() {
				return Iterators.paddedPartition(iterable.iterator(), size);
			}
		};
	}

	/**
	 * Returns the elements of {@code unfiltered} that satisfy a predicate. The
	 * resulting iterable's iterator does not support {@code remove()}.
	 */
	public static <T> Iterable<T> filter(final Iterable<T> unfiltered, final Predicate<? super T> predicate) {
		checkNotNull(unfiltered);
		checkNotNull(predicate);
		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.filter(unfiltered.iterator(), predicate);
			}
		};
	}

	/**
	 * Returns all instances of class {@code type} in {@code unfiltered}. The
	 * returned iterable has elements whose class is {@code type} or a subclass of
	 * {@code type}. The returned iterable's iterator does not support
	 * {@code remove()}.
	 *
	 * @param unfiltered an iterable containing objects of any type
	 * @param type       the type of elements desired
	 * @return an unmodifiable iterable containing all elements of the original
	 *         iterable that were of the requested type
	 */
	@GwtIncompatible("Class.isInstance")
	public static <T> Iterable<T> filter(final Iterable<?> unfiltered, final Class<T> type) {
		checkNotNull(unfiltered);
		checkNotNull(type);
		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.filter(unfiltered.iterator(), type);
			}
		};
	}

	/**
	 * Returns {@code true} if any element in {@code iterable} satisfies the
	 * predicate.
	 */
	public static <T> boolean any(Iterable<T> iterable, Predicate<? super T> predicate) {
		return Iterators.any(iterable.iterator(), predicate);
	}

	/**
	 * Returns {@code true} if every element in {@code iterable} satisfies the
	 * predicate. If {@code iterable} is empty, {@code true} is returned.
	 */
	public static <T> boolean all(Iterable<T> iterable, Predicate<? super T> predicate) {
		return Iterators.all(iterable.iterator(), predicate);
	}

	/**
	 * Returns the first element in {@code iterable} that satisfies the given
	 * predicate; use this method only when such an element is known to exist. If it
	 * is possible that <i>no</i> element will match, use {@link #tryFind} or
	 * {@link #find(Iterable, Predicate, Object)} instead.
	 *
	 * @throws NoSuchElementException if no element in {@code iterable} matches the
	 *                                given predicate
	 */
	public static <T> T find(Iterable<T> iterable, Predicate<? super T> predicate) {
		return Iterators.find(iterable.iterator(), predicate);
	}

	/**
	 * Returns the first element in {@code iterable} that satisfies the given
	 * predicate, or {@code defaultValue} if none found. Note that this can usually
	 * be handled more naturally using {@code
	 * tryFind(iterable, predicate).or(defaultValue)}.
	 *
	 * @since 7.0
	 */
	@Nullable
	public static <T> T find(Iterable<? extends T> iterable, Predicate<? super T> predicate, @Nullable T defaultValue) {
		return Iterators.find(iterable.iterator(), predicate, defaultValue);
	}

	/**
	 * Returns an {@link Optional} containing the first element in {@code
	 * iterable} that satisfies the given predicate, if such an element exists.
	 *
	 * <p>
	 * <b>Warning:</b> avoid using a {@code predicate} that matches {@code
	 * null}. If {@code null} is matched in {@code iterable}, a NullPointerException
	 * will be thrown.
	 *
	 * @since 11.0
	 */
	public static <T> Optional<T> tryFind(Iterable<T> iterable, Predicate<? super T> predicate) {
		return Iterators.tryFind(iterable.iterator(), predicate);
	}

	/**
	 * Returns the index in {@code iterable} of the first element that satisfies the
	 * provided {@code predicate}, or {@code -1} if the Iterable has no such
	 * elements.
	 *
	 * <p>
	 * More formally, returns the lowest index {@code i} such that
	 * {@code predicate.apply(Iterables.get(iterable, i))} returns {@code true}, or
	 * {@code -1} if there is no such index.
	 *
	 * @since 2.0
	 */
	public static <T> int indexOf(Iterable<T> iterable, Predicate<? super T> predicate) {
		return Iterators.indexOf(iterable.iterator(), predicate);
	}

	/**
	 * Returns an iterable that applies {@code function} to each element of {@code
	 * fromIterable}.
	 *
	 * <p>
	 * The returned iterable's iterator supports {@code remove()} if the provided
	 * iterator does. After a successful {@code remove()} call, {@code fromIterable}
	 * no longer contains the corresponding element.
	 *
	 * <p>
	 * If the input {@code Iterable} is known to be a {@code List} or other
	 * {@code Collection}, consider {@link Lists#transform} and
	 * {@link Collections2#transform}.
	 */
	public static <F, T> Iterable<T> transform(final Iterable<F> fromIterable,
			final Function<? super F, ? extends T> function) {
		checkNotNull(fromIterable);
		checkNotNull(function);
		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.transform(fromIterable.iterator(), function);
			}
		};
	}

	/**
	 * Returns the element at the specified position in an iterable.
	 *
	 * @param position position of the element to return
	 * @return the element at the specified position in {@code iterable}
	 * @throws IndexOutOfBoundsException if {@code position} is negative or greater
	 *                                   than or equal to the size of
	 *                                   {@code iterable}
	 */
	public static <T> T get(Iterable<T> iterable, int position) {
		checkNotNull(iterable);
		return (iterable instanceof List) ? ((List<T>) iterable).get(position)
				: Iterators.get(iterable.iterator(), position);
	}

	/**
	 * Returns the element at the specified position in an iterable or a default
	 * value otherwise.
	 *
	 * @param position     position of the element to return
	 * @param defaultValue the default value to return if {@code position} is
	 *                     greater than or equal to the size of the iterable
	 * @return the element at the specified position in {@code iterable} or
	 *         {@code defaultValue} if {@code iterable} contains fewer than
	 *         {@code position + 1} elements.
	 * @throws IndexOutOfBoundsException if {@code position} is negative
	 * @since 4.0
	 */
	@Nullable
	public static <T> T get(Iterable<? extends T> iterable, int position, @Nullable T defaultValue) {
		checkNotNull(iterable);
		Iterators.checkNonnegative(position);
		if (iterable instanceof List) {
			List<? extends T> list = Lists.cast(iterable);
			return (position < list.size()) ? list.get(position) : defaultValue;
		} else {
			Iterator<? extends T> iterator = iterable.iterator();
			Iterators.advance(iterator, position);
			return Iterators.getNext(iterator, defaultValue);
		}
	}

	/**
	 * Returns the first element in {@code iterable} or {@code defaultValue} if the
	 * iterable is empty. The {@link Iterators} analog to this method is
	 * {@link Iterators#getNext}.
	 *
	 * <p>
	 * If no default value is desired (and the caller instead wants a
	 * {@link NoSuchElementException} to be thrown), it is recommended that
	 * {@code iterable.iterator().next()} is used instead.
	 *
	 * @param defaultValue the default value to return if the iterable is empty
	 * @return the first element of {@code iterable} or the default value
	 * @since 7.0
	 */
	@Nullable
	public static <T> T getFirst(Iterable<? extends T> iterable, @Nullable T defaultValue) {
		return Iterators.getNext(iterable.iterator(), defaultValue);
	}

	/**
	 * Returns the last element of {@code iterable}.
	 *
	 * @return the last element of {@code iterable}
	 * @throws NoSuchElementException if the iterable is empty
	 */
	public static <T> T getLast(Iterable<T> iterable) {
		// TODO(kevinb): Support a concurrently modified collection?
		if (iterable instanceof List) {
			List<T> list = (List<T>) iterable;
			if (list.isEmpty()) {
				throw new NoSuchElementException();
			}
			return getLastInNonemptyList(list);
		}

		return Iterators.getLast(iterable.iterator());
	}

	/**
	 * Returns the last element of {@code iterable} or {@code defaultValue} if the
	 * iterable is empty.
	 *
	 * @param defaultValue the value to return if {@code iterable} is empty
	 * @return the last element of {@code iterable} or the default value
	 * @since 3.0
	 */
	@Nullable
	public static <T> T getLast(Iterable<? extends T> iterable, @Nullable T defaultValue) {
		if (iterable instanceof Collection) {
			Collection<? extends T> c = Collections2.cast(iterable);
			if (c.isEmpty()) {
				return defaultValue;
			} else if (iterable instanceof List) {
				return getLastInNonemptyList(Lists.cast(iterable));
			}
		}

		return Iterators.getLast(iterable.iterator(), defaultValue);
	}

	private static <T> T getLastInNonemptyList(List<T> list) {
		return list.get(list.size() - 1);
	}

	/**
	 * Returns a view of {@code iterable} that skips its first {@code numberToSkip}
	 * elements. If {@code iterable} contains fewer than {@code numberToSkip}
	 * elements, the returned iterable skips all of its elements.
	 *
	 * <p>
	 * Modifications to the underlying {@link Iterable} before a call to
	 * {@code iterator()} are reflected in the returned iterator. That is, the
	 * iterator skips the first {@code numberToSkip} elements that exist when the
	 * {@code Iterator} is created, not when {@code skip()} is called.
	 *
	 * <p>
	 * The returned iterable's iterator supports {@code remove()} if the iterator of
	 * the underlying iterable supports it. Note that it is <i>not</i> possible to
	 * delete the last skipped element by immediately calling {@code remove()} on
	 * that iterator, as the {@code Iterator} contract states that a call to
	 * {@code remove()} before a call to {@code next()} will throw an
	 * {@link IllegalStateException}.
	 *
	 * @since 3.0
	 */
	public static <T> Iterable<T> skip(final Iterable<T> iterable, final int numberToSkip) {
		checkNotNull(iterable);
		checkArgument(numberToSkip >= 0, "number to skip cannot be negative");

		if (iterable instanceof List) {
			final List<T> list = (List<T>) iterable;
			return new FluentIterable<T>() {
				@Override
				public Iterator<T> iterator() {
					// TODO(kevinb): Support a concurrently modified collection?
					int toSkip = Math.min(list.size(), numberToSkip);
					return list.subList(toSkip, list.size()).iterator();
				}
			};
		}

		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				final Iterator<T> iterator = iterable.iterator();

				Iterators.advance(iterator, numberToSkip);

				/*
				 * We can't just return the iterator because an immediate call to its remove()
				 * method would remove one of the skipped elements instead of throwing an
				 * IllegalStateException.
				 */
				return new Iterator<T>() {
					boolean atStart = true;

					@Override
					public boolean hasNext() {
						return iterator.hasNext();
					}

					@Override
					public T next() {
						T result = iterator.next();
						atStart = false; // not called if next() fails
						return result;
					}

					@Override
					public void remove() {
						checkRemove(!atStart);
						iterator.remove();
					}
				};
			}
		};
	}

	/**
	 * Creates an iterable with the first {@code limitSize} elements of the given
	 * iterable. If the original iterable does not contain that many elements, the
	 * returned iterable will have the same behavior as the original iterable. The
	 * returned iterable's iterator supports {@code remove()} if the original
	 * iterator does.
	 *
	 * @param iterable  the iterable to limit
	 * @param limitSize the maximum number of elements in the returned iterable
	 * @throws IllegalArgumentException if {@code limitSize} is negative
	 * @since 3.0
	 */
	public static <T> Iterable<T> limit(final Iterable<T> iterable, final int limitSize) {
		checkNotNull(iterable);
		checkArgument(limitSize >= 0, "limit is negative");
		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.limit(iterable.iterator(), limitSize);
			}
		};
	}

	/**
	 * Returns a view of the supplied iterable that wraps each generated
	 * {@link Iterator} through {@link Iterators#consumingIterator(Iterator)}.
	 *
	 * <p>
	 * Note: If {@code iterable} is a {@link Queue}, the returned iterable will get
	 * entries from {@link Queue#remove()} since {@link Queue}'s iteration order is
	 * undefined. Calling {@link Iterator#hasNext()} on a generated iterator from
	 * the returned iterable may cause an item to be immediately dequeued for return
	 * on a subsequent call to {@link Iterator#next()}.
	 *
	 * @param iterable the iterable to wrap
	 * @return a view of the supplied iterable that wraps each generated iterator
	 *         through {@link Iterators#consumingIterator(Iterator)}; for queues, an
	 *         iterable that generates iterators that return and consume the queue's
	 *         elements in queue order
	 *
	 * @see Iterators#consumingIterator(Iterator)
	 * @since 2.0
	 */
	public static <T> Iterable<T> consumingIterable(final Iterable<T> iterable) {
		if (iterable instanceof Queue) {
			return new FluentIterable<T>() {
				@Override
				public Iterator<T> iterator() {
					return new ConsumingQueueIterator<T>((Queue<T>) iterable);
				}

				@Override
				public String toString() {
					return "Iterables.consumingIterable(...)";
				}
			};
		}

		checkNotNull(iterable);

		return new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.consumingIterator(iterable.iterator());
			}

			@Override
			public String toString() {
				return "Iterables.consumingIterable(...)";
			}
		};
	}

	private static class ConsumingQueueIterator<T> extends AbstractIterator<T> {
		private final Queue<T> queue;

		private ConsumingQueueIterator(Queue<T> queue) {
			this.queue = queue;
		}

		@Override
		public T computeNext() {
			try {
				return queue.remove();
			} catch (NoSuchElementException e) {
				return endOfData();
			}
		}
	}

	// Methods only in Iterables, not in Iterators

	/**
	 * Determines if the given iterable contains no elements.
	 *
	 * <p>
	 * There is no precise {@link Iterator} equivalent to this method, since one can
	 * only ask an iterator whether it has any elements <i>remaining</i> (which one
	 * does using {@link Iterator#hasNext}).
	 *
	 * @return {@code true} if the iterable contains no elements
	 */
	public static boolean isEmpty(Iterable<?> iterable) {
		if (iterable instanceof Collection) {
			return ((Collection<?>) iterable).isEmpty();
		}
		return !iterable.iterator().hasNext();
	}

	/**
	 * Returns an iterable over the merged contents of all given {@code iterables}.
	 * Equivalent entries will not be de-duplicated.
	 *
	 * <p>
	 * Callers must ensure that the source {@code iterables} are in non-descending
	 * order as this method does not sort its input.
	 *
	 * <p>
	 * For any equivalent elements across all {@code iterables}, it is undefined
	 * which element is returned first.
	 *
	 * @since 11.0
	 */
	@Beta
	public static <T> Iterable<T> mergeSorted(final Iterable<? extends Iterable<? extends T>> iterables,
			final Comparator<? super T> comparator) {
		checkNotNull(iterables, "iterables");
		checkNotNull(comparator, "comparator");
		Iterable<T> iterable = new FluentIterable<T>() {
			@Override
			public Iterator<T> iterator() {
				return Iterators.mergeSorted(Iterables.transform(iterables, Iterables.<T>toIterator()), comparator);
			}
		};
		return new UnmodifiableIterable<T>(iterable);
	}

	// TODO(user): Is this the best place for this? Move to fluent functions?
	// Useful as a public method?
	private static <T> Function<Iterable<? extends T>, Iterator<? extends T>> toIterator() {
		return new Function<Iterable<? extends T>, Iterator<? extends T>>() {
			@Override
			public Iterator<? extends T> apply(Iterable<? extends T> iterable) {
				return iterable.iterator();
			}
		};
	}
}