/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.hash;

import static com.google.common.base.Preconditions.checkArgument;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.Charset;

import com.google.common.base.Preconditions;

/**
 * Skeleton implementation of {@link HashFunction}. Provides default
 * implementations which invokes the appropriate method on {@link #newHasher()},
 * then return the result of {@link Hasher#hash}.
 *
 * <p>
 * Invocations of {@link #newHasher(int)} also delegate to
 * {@linkplain #newHasher()}, ignoring the expected input size parameter.
 *
 * @author Kevin Bourrillion
 */
abstract class AbstractStreamingHashFunction implements HashFunction {
	@Override
	public <T> HashCode hashObject(T instance, Funnel<? super T> funnel) {
		return newHasher().putObject(instance, funnel).hash();
	}

	@Override
	public HashCode hashUnencodedChars(CharSequence input) {
		return newHasher().putUnencodedChars(input).hash();
	}

	@Override
	public HashCode hashString(CharSequence input, Charset charset) {
		return newHasher().putString(input, charset).hash();
	}

	@Override
	public HashCode hashInt(int input) {
		return newHasher().putInt(input).hash();
	}

	@Override
	public HashCode hashLong(long input) {
		return newHasher().putLong(input).hash();
	}

	@Override
	public HashCode hashBytes(byte[] input) {
		return newHasher().putBytes(input).hash();
	}

	@Override
	public HashCode hashBytes(byte[] input, int off, int len) {
		return newHasher().putBytes(input, off, len).hash();
	}

	@Override
	public Hasher newHasher(int expectedInputSize) {
		Preconditions.checkArgument(expectedInputSize >= 0);
		return newHasher();
	}

	/**
	 * A convenience base class for implementors of {@code Hasher}; handles
	 * accumulating data until an entire "chunk" (of implementation-dependent
	 * length) is ready to be hashed.
	 *
	 * @author Kevin Bourrillion
	 * @author Dimitris Andreou
	 */
	// TODO(kevinb): this class still needs some design-and-document-for-inheritance
	// love
	protected static abstract class AbstractStreamingHasher extends AbstractHasher {
		/** Buffer via which we pass data to the hash algorithm (the implementor) */
		private final ByteBuffer buffer;

		/** Number of bytes to be filled before process() invocation(s). */
		private final int bufferSize;

		/** Number of bytes processed per process() invocation. */
		private final int chunkSize;

		/**
		 * Constructor for use by subclasses. This hasher instance will process chunks
		 * of the specified size.
		 *
		 * @param chunkSize the number of bytes available per
		 *                  {@link #process(ByteBuffer)} invocation; must be at least 4
		 */
		protected AbstractStreamingHasher(int chunkSize) {
			this(chunkSize, chunkSize);
		}

		/**
		 * Constructor for use by subclasses. This hasher instance will process chunks
		 * of the specified size, using an internal buffer of {@code bufferSize} size,
		 * which must be a multiple of {@code chunkSize}.
		 *
		 * @param chunkSize  the number of bytes available per
		 *                   {@link #process(ByteBuffer)} invocation; must be at least 4
		 * @param bufferSize the size of the internal buffer. Must be a multiple of
		 *                   chunkSize
		 */
		protected AbstractStreamingHasher(int chunkSize, int bufferSize) {
			// TODO(kevinb): check more preconditions (as bufferSize >= chunkSize) if this
			// is ever public
			checkArgument(bufferSize % chunkSize == 0);

			// TODO(user): benchmark performance difference with longer buffer
			this.buffer = ByteBuffer.allocate(bufferSize + 7) // always space for a single primitive
					.order(ByteOrder.LITTLE_ENDIAN);
			this.bufferSize = bufferSize;
			this.chunkSize = chunkSize;
		}

		/**
		 * Processes the available bytes of the buffer (at most {@code chunk} bytes).
		 */
		protected abstract void process(ByteBuffer bb);

		/**
		 * This is invoked for the last bytes of the input, which are not enough to fill
		 * a whole chunk. The passed {@code ByteBuffer} is guaranteed to be non-empty.
		 *
		 * <p>
		 * This implementation simply pads with zeros and delegates to
		 * {@link #process(ByteBuffer)}.
		 */
		protected void processRemaining(ByteBuffer bb) {
			bb.position(bb.limit()); // move at the end
			bb.limit(chunkSize + 7); // get ready to pad with longs
			while (bb.position() < chunkSize) {
				bb.putLong(0);
			}
			bb.limit(chunkSize);
			bb.flip();
			process(bb);
		}

		@Override
		public final Hasher putBytes(byte[] bytes) {
			return putBytes(bytes, 0, bytes.length);
		}

		@Override
		public final Hasher putBytes(byte[] bytes, int off, int len) {
			return putBytes(ByteBuffer.wrap(bytes, off, len).order(ByteOrder.LITTLE_ENDIAN));
		}

		private Hasher putBytes(ByteBuffer readBuffer) {
			// If we have room for all of it, this is easy
			if (readBuffer.remaining() <= buffer.remaining()) {
				buffer.put(readBuffer);
				munchIfFull();
				return this;
			}

			// First add just enough to fill buffer size, and munch that
			int bytesToCopy = bufferSize - buffer.position();
			for (int i = 0; i < bytesToCopy; i++) {
				buffer.put(readBuffer.get());
			}
			munch(); // buffer becomes empty here, since chunkSize divides bufferSize

			// Now process directly from the rest of the input buffer
			while (readBuffer.remaining() >= chunkSize) {
				process(readBuffer);
			}

			// Finally stick the remainder back in our usual buffer
			buffer.put(readBuffer);
			return this;
		}

		@Override
		public final Hasher putUnencodedChars(CharSequence charSequence) {
			for (int i = 0; i < charSequence.length(); i++) {
				putChar(charSequence.charAt(i));
			}
			return this;
		}

		@Override
		public final Hasher putByte(byte b) {
			buffer.put(b);
			munchIfFull();
			return this;
		}

		@Override
		public final Hasher putShort(short s) {
			buffer.putShort(s);
			munchIfFull();
			return this;
		}

		@Override
		public final Hasher putChar(char c) {
			buffer.putChar(c);
			munchIfFull();
			return this;
		}

		@Override
		public final Hasher putInt(int i) {
			buffer.putInt(i);
			munchIfFull();
			return this;
		}

		@Override
		public final Hasher putLong(long l) {
			buffer.putLong(l);
			munchIfFull();
			return this;
		}

		@Override
		public final <T> Hasher putObject(T instance, Funnel<? super T> funnel) {
			funnel.funnel(instance, this);
			return this;
		}

		@Override
		public final HashCode hash() {
			munch();
			buffer.flip();
			if (buffer.remaining() > 0) {
				processRemaining(buffer);
			}
			return makeHash();
		}

		abstract HashCode makeHash();

		// Process pent-up data in chunks
		private void munchIfFull() {
			if (buffer.remaining() < 8) {
				// buffer is full; not enough room for a primitive. We have at least one full
				// chunk.
				munch();
			}
		}

		private void munch() {
			buffer.flip();
			while (buffer.remaining() >= chunkSize) {
				// we could limit the buffer to ensure process() does not read more than
				// chunkSize number of bytes, but we trust the implementations
				process(buffer);
			}
			buffer.compact(); // preserve any remaining data that do not make a full chunk
		}
	}
}