/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.math.DoubleUtils.IMPLICIT_BIT;
import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS;
import static com.google.common.math.DoubleUtils.getSignificand;
import static com.google.common.math.DoubleUtils.isFinite;
import static com.google.common.math.DoubleUtils.isNormal;
import static com.google.common.math.DoubleUtils.scaleNormalize;
import static com.google.common.math.MathPreconditions.checkInRange;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.copySign;
import static java.lang.Math.getExponent;
import static java.lang.Math.log;
import static java.lang.Math.rint;

import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.Iterator;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.primitives.Booleans;

/**
 * A class for arithmetic on doubles that is not covered by
 * {@link java.lang.Math}.
 *
 * @author Louis Wasserman
 * @since 11.0
 */
@GwtCompatible(emulated = true)
public final class DoubleMath {
	/*
	 * This method returns a value y such that rounding y DOWN (towards zero) gives
	 * the same result as rounding x according to the specified mode.
	 */
	@GwtIncompatible("#isMathematicalInteger, com.google.common.math.DoubleUtils")
	static double roundIntermediate(double x, RoundingMode mode) {
		if (!isFinite(x)) {
			throw new ArithmeticException("input is infinite or NaN");
		}
		switch (mode) {
		case UNNECESSARY:
			checkRoundingUnnecessary(isMathematicalInteger(x));
			return x;

		case FLOOR:
			if (x >= 0.0 || isMathematicalInteger(x)) {
				return x;
			} else {
				return x - 1.0;
			}

		case CEILING:
			if (x <= 0.0 || isMathematicalInteger(x)) {
				return x;
			} else {
				return x + 1.0;
			}

		case DOWN:
			return x;

		case UP:
			if (isMathematicalInteger(x)) {
				return x;
			} else {
				return x + Math.copySign(1.0, x);
			}

		case HALF_EVEN:
			return rint(x);

		case HALF_UP: {
			double z = rint(x);
			if (abs(x - z) == 0.5) {
				return x + copySign(0.5, x);
			} else {
				return z;
			}
		}

		case HALF_DOWN: {
			double z = rint(x);
			if (abs(x - z) == 0.5) {
				return x;
			} else {
				return z;
			}
		}

		default:
			throw new AssertionError();
		}
	}

	/**
	 * Returns the {@code int} value that is equal to {@code x} rounded with the
	 * specified rounding mode, if possible.
	 *
	 * @throws ArithmeticException if
	 *                             <ul>
	 *                             <li>{@code x} is infinite or NaN
	 *                             <li>{@code x}, after being rounded to a
	 *                             mathematical integer using the specified rounding
	 *                             mode, is either less than
	 *                             {@code Integer.MIN_VALUE} or greater than {@code
	 *         Integer.MAX_VALUE}
	 *                             <li>{@code x} is not a mathematical integer and
	 *                             {@code mode} is {@link RoundingMode#UNNECESSARY}
	 *                             </ul>
	 */
	@GwtIncompatible("#roundIntermediate")
	public static int roundToInt(double x, RoundingMode mode) {
		double z = roundIntermediate(x, mode);
		checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0);
		return (int) z;
	}

	private static final double MIN_INT_AS_DOUBLE = -0x1p31;
	private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;

	/**
	 * Returns the {@code long} value that is equal to {@code x} rounded with the
	 * specified rounding mode, if possible.
	 *
	 * @throws ArithmeticException if
	 *                             <ul>
	 *                             <li>{@code x} is infinite or NaN
	 *                             <li>{@code x}, after being rounded to a
	 *                             mathematical integer using the specified rounding
	 *                             mode, is either less than {@code Long.MIN_VALUE}
	 *                             or greater than {@code
	 *         Long.MAX_VALUE}
	 *                             <li>{@code x} is not a mathematical integer and
	 *                             {@code mode} is {@link RoundingMode#UNNECESSARY}
	 *                             </ul>
	 */
	@GwtIncompatible("#roundIntermediate")
	public static long roundToLong(double x, RoundingMode mode) {
		double z = roundIntermediate(x, mode);
		checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE);
		return (long) z;
	}

	private static final double MIN_LONG_AS_DOUBLE = -0x1p63;
	/*
	 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead,
	 * we store Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all
	 * comparisons by 1.
	 */
	private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;

	/**
	 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with
	 * the specified rounding mode, if possible.
	 *
	 * @throws ArithmeticException if
	 *                             <ul>
	 *                             <li>{@code x} is infinite or NaN
	 *                             <li>{@code x} is not a mathematical integer and
	 *                             {@code mode} is {@link RoundingMode#UNNECESSARY}
	 *                             </ul>
	 */
	@GwtIncompatible("#roundIntermediate, java.lang.Math.getExponent, " + "com.google.common.math.DoubleUtils")
	public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
		x = roundIntermediate(x, mode);
		if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
			return BigInteger.valueOf((long) x);
		}
		int exponent = getExponent(x);
		long significand = getSignificand(x);
		BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
		return (x < 0) ? result.negate() : result;
	}

	/**
	 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some
	 * finite integer {@code k}.
	 */
	@GwtIncompatible("com.google.common.math.DoubleUtils")
	public static boolean isPowerOfTwo(double x) {
		return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x));
	}

	/**
	 * Returns the base 2 logarithm of a double value.
	 *
	 * <p>
	 * Special cases:
	 * <ul>
	 * <li>If {@code x} is NaN or less than zero, the result is NaN.
	 * <li>If {@code x} is positive infinity, the result is positive infinity.
	 * <li>If {@code x} is positive or negative zero, the result is negative
	 * infinity.
	 * </ul>
	 *
	 * <p>
	 * The computed result is within 1 ulp of the exact result.
	 *
	 * <p>
	 * If the result of this method will be immediately rounded to an {@code int},
	 * {@link #log2(double, RoundingMode)} is faster.
	 */
	public static double log2(double x) {
		return log(x) / LN_2; // surprisingly within 1 ulp according to tests
	}

	private static final double LN_2 = log(2);

	/**
	 * Returns the base 2 logarithm of a double value, rounded with the specified
	 * rounding mode to an {@code int}.
	 *
	 * <p>
	 * Regardless of the rounding mode, this is faster than {@code (int) log2(x)}.
	 *
	 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or
	 *                                  {@code x} is infinite
	 */
	@GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils")
	@SuppressWarnings("fallthrough")
	public static int log2(double x, RoundingMode mode) {
		checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite");
		int exponent = getExponent(x);
		if (!isNormal(x)) {
			return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS;
			// Do the calculation on a normal value.
		}
		// x is positive, finite, and normal
		boolean increment;
		switch (mode) {
		case UNNECESSARY:
			checkRoundingUnnecessary(isPowerOfTwo(x));
			// fall through
		case FLOOR:
			increment = false;
			break;
		case CEILING:
			increment = !isPowerOfTwo(x);
			break;
		case DOWN:
			increment = exponent < 0 & !isPowerOfTwo(x);
			break;
		case UP:
			increment = exponent >= 0 & !isPowerOfTwo(x);
			break;
		case HALF_DOWN:
		case HALF_EVEN:
		case HALF_UP:
			double xScaled = scaleNormalize(x);
			// sqrt(2) is irrational, and the spec is relative to the "exact numerical
			// result,"
			// so log2(x) is never exactly exponent + 0.5.
			increment = (xScaled * xScaled) > 2.0;
			break;
		default:
			throw new AssertionError();
		}
		return increment ? exponent + 1 : exponent;
	}

	/**
	 * Returns {@code true} if {@code x} represents a mathematical integer.
	 *
	 * <p>
	 * This is equivalent to, but not necessarily implemented as, the expression
	 * {@code
	 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}.
	 */
	@GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils")
	public static boolean isMathematicalInteger(double x) {
		return isFinite(x)
				&& (x == 0.0 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x));
	}

	/**
	 * Returns {@code n!}, that is, the product of the first {@code n} positive
	 * integers, {@code 1} if {@code n == 0}, or e n!}, or
	 * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}.
	 *
	 * <p>
	 * The result is within 1 ulp of the true value.
	 *
	 * @throws IllegalArgumentException if {@code n < 0}
	 */
	public static double factorial(int n) {
		checkNonNegative("n", n);
		if (n > MAX_FACTORIAL) {
			return Double.POSITIVE_INFINITY;
		} else {
			// Multiplying the last (n & 0xf) values into their own accumulator gives a more
			// accurate
			// result than multiplying by everySixteenthFactorial[n >> 4] directly.
			double accum = 1.0;
			for (int i = 1 + (n & ~0xf); i <= n; i++) {
				accum *= i;
			}
			return accum * everySixteenthFactorial[n >> 4];
		}
	}

	@VisibleForTesting
	static final int MAX_FACTORIAL = 170;

	@VisibleForTesting
	static final double[] everySixteenthFactorial = { 0x1.0p0, 0x1.30777758p44, 0x1.956ad0aae33a4p117,
			0x1.ee69a78d72cb6p202, 0x1.fe478ee34844ap295, 0x1.c619094edabffp394, 0x1.3638dd7bd6347p498,
			0x1.7cac197cfe503p605, 0x1.1e5dfc140e1e5p716, 0x1.8ce85fadb707ep829, 0x1.95d5f3d928edep945 };

	/**
	 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance}
	 * of each other.
	 *
	 * <p>
	 * Technically speaking, this is equivalent to
	 * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}.
	 *
	 * <p>
	 * Notable special cases include:
	 * <ul>
	 * <li>All NaNs are fuzzily equal.
	 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal.
	 * <li>Positive and negative zero are always fuzzily equal.
	 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN,
	 * then {@code a} and {@code b} are fuzzily equal if and only if {@code a == b}.
	 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are
	 * fuzzily equal.
	 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code
	 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves.</li>
	 *
	 * <p>
	 * This is reflexive and symmetric, but <em>not</em> transitive, so it is
	 * <em>not</em> an equivalence relation and <em>not</em> suitable for use in
	 * {@link Object#equals} implementations.
	 *
	 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
	 * @since 13.0
	 */
	public static boolean fuzzyEquals(double a, double b, double tolerance) {
		MathPreconditions.checkNonNegative("tolerance", tolerance);
		return Math.copySign(a - b, 1.0) <= tolerance
				// copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN
				// semantics
				|| (a == b) // needed to ensure that infinities equal themselves
				|| (Double.isNaN(a) && Double.isNaN(b));
	}

	/**
	 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal
	 * values.
	 *
	 * <p>
	 * This method is equivalent to
	 * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In
	 * particular, like {@link Double#compare(double, double)}, it treats all NaN
	 * values as equal and greater than all other values (including
	 * {@link Double#POSITIVE_INFINITY}).
	 *
	 * <p>
	 * This is <em>not</em> a total ordering and is <em>not</em> suitable for use in
	 * {@link Comparable#compareTo} implementations. In particular, it is not
	 * transitive.
	 *
	 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
	 * @since 13.0
	 */
	public static int fuzzyCompare(double a, double b, double tolerance) {
		if (fuzzyEquals(a, b, tolerance)) {
			return 0;
		} else if (a < b) {
			return -1;
		} else if (a > b) {
			return 1;
		} else {
			return Booleans.compare(Double.isNaN(a), Double.isNaN(b));
		}
	}

	@GwtIncompatible("com.google.common.math.DoubleUtils")
	private static final class MeanAccumulator {

		private long count = 0;
		private double mean = 0.0;

		void add(double value) {
			checkArgument(isFinite(value));
			++count;
			// Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
			mean += (value - mean) / count;
		}

		double mean() {
			checkArgument(count > 0, "Cannot take mean of 0 values");
			return mean;
		}
	}

	/**
	 * Returns the arithmetic mean of the values. There must be at least one value,
	 * and they must all be finite.
	 */
	@GwtIncompatible("MeanAccumulator")
	public static double mean(double... values) {
		MeanAccumulator accumulator = new MeanAccumulator();
		for (double value : values) {
			accumulator.add(value);
		}
		return accumulator.mean();
	}

	/**
	 * Returns the arithmetic mean of the values. There must be at least one value.
	 * The values will be converted to doubles, which does not cause any loss of
	 * precision for ints.
	 */
	@GwtIncompatible("MeanAccumulator")
	public static double mean(int... values) {
		MeanAccumulator accumulator = new MeanAccumulator();
		for (int value : values) {
			accumulator.add(value);
		}
		return accumulator.mean();
	}

	/**
	 * Returns the arithmetic mean of the values. There must be at least one value.
	 * The values will be converted to doubles, which causes loss of precision for
	 * longs of magnitude over 2^53 (slightly over 9e15).
	 */
	@GwtIncompatible("MeanAccumulator")
	public static double mean(long... values) {
		MeanAccumulator accumulator = new MeanAccumulator();
		for (long value : values) {
			accumulator.add(value);
		}
		return accumulator.mean();
	}

	/**
	 * Returns the arithmetic mean of the values. There must be at least one value,
	 * and they must all be finite. The values will be converted to doubles, which
	 * may cause loss of precision for some numeric types.
	 */
	@GwtIncompatible("MeanAccumulator")
	public static double mean(Iterable<? extends Number> values) {
		MeanAccumulator accumulator = new MeanAccumulator();
		for (Number value : values) {
			accumulator.add(value.doubleValue());
		}
		return accumulator.mean();
	}

	/**
	 * Returns the arithmetic mean of the values. There must be at least one value,
	 * and they must all be finite. The values will be converted to doubles, which
	 * may cause loss of precision for some numeric types.
	 */
	@GwtIncompatible("MeanAccumulator")
	public static double mean(Iterator<? extends Number> values) {
		MeanAccumulator accumulator = new MeanAccumulator();
		while (values.hasNext()) {
			accumulator.add(values.next().doubleValue());
		}
		return accumulator.mean();
	}

	private DoubleMath() {
	}
}