244 lines
7.1 KiB
Java
244 lines
7.1 KiB
Java
package net.lax1dude.eaglercraft.sp;
|
|
|
|
/**
|
|
* implementation of MD5 as outlined in "Handbook of Applied Cryptography",
|
|
* pages 346 - 347.
|
|
*/
|
|
public class MD5Digest extends GeneralDigest {
|
|
private static final int DIGEST_LENGTH = 16;
|
|
|
|
private int H1, H2, H3, H4; // IV's
|
|
|
|
private int[] X = new int[16];
|
|
private int xOff;
|
|
|
|
public String getAlgorithmName() {
|
|
return "MD5";
|
|
}
|
|
|
|
public int getDigestSize() {
|
|
return DIGEST_LENGTH;
|
|
}
|
|
|
|
protected void processWord(byte[] in, int inOff) {
|
|
X[xOff++] = littleEndianToInt(in, inOff);
|
|
|
|
if (xOff == 16) {
|
|
processBlock();
|
|
}
|
|
}
|
|
|
|
private int littleEndianToInt(byte[] bs, int off) {
|
|
int n = bs[off] & 0xff;
|
|
n |= (bs[++off] & 0xff) << 8;
|
|
n |= (bs[++off] & 0xff) << 16;
|
|
n |= bs[++off] << 24;
|
|
return n;
|
|
}
|
|
|
|
protected void processLength(long bitLength) {
|
|
if (xOff > 14) {
|
|
processBlock();
|
|
}
|
|
|
|
X[14] = (int) (bitLength & 0xffffffff);
|
|
X[15] = (int) (bitLength >>> 32);
|
|
}
|
|
|
|
public int doFinal(byte[] out, int outOff) {
|
|
finish();
|
|
|
|
intToLittleEndian(H1, out, outOff);
|
|
intToLittleEndian(H2, out, outOff + 4);
|
|
intToLittleEndian(H3, out, outOff + 8);
|
|
intToLittleEndian(H4, out, outOff + 12);
|
|
|
|
reset();
|
|
|
|
return DIGEST_LENGTH;
|
|
}
|
|
|
|
private void intToLittleEndian(int n, byte[] bs, int off) {
|
|
bs[off] = (byte) (n);
|
|
bs[++off] = (byte) (n >>> 8);
|
|
bs[++off] = (byte) (n >>> 16);
|
|
bs[++off] = (byte) (n >>> 24);
|
|
}
|
|
|
|
/**
|
|
* reset the chaining variables to the IV values.
|
|
*/
|
|
public void reset() {
|
|
super.reset();
|
|
|
|
H1 = 0x67452301;
|
|
H2 = 0xefcdab89;
|
|
H3 = 0x98badcfe;
|
|
H4 = 0x10325476;
|
|
|
|
xOff = 0;
|
|
|
|
for (int i = 0; i != X.length; i++) {
|
|
X[i] = 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// round 1 left rotates
|
|
//
|
|
private static final int S11 = 7;
|
|
private static final int S12 = 12;
|
|
private static final int S13 = 17;
|
|
private static final int S14 = 22;
|
|
|
|
//
|
|
// round 2 left rotates
|
|
//
|
|
private static final int S21 = 5;
|
|
private static final int S22 = 9;
|
|
private static final int S23 = 14;
|
|
private static final int S24 = 20;
|
|
|
|
//
|
|
// round 3 left rotates
|
|
//
|
|
private static final int S31 = 4;
|
|
private static final int S32 = 11;
|
|
private static final int S33 = 16;
|
|
private static final int S34 = 23;
|
|
|
|
//
|
|
// round 4 left rotates
|
|
//
|
|
private static final int S41 = 6;
|
|
private static final int S42 = 10;
|
|
private static final int S43 = 15;
|
|
private static final int S44 = 21;
|
|
|
|
/*
|
|
* rotate int x left n bits.
|
|
*/
|
|
private int rotateLeft(int x, int n) {
|
|
return (x << n) | (x >>> (32 - n));
|
|
}
|
|
|
|
/*
|
|
* F, G, H and I are the basic MD5 functions.
|
|
*/
|
|
private int F(int u, int v, int w) {
|
|
return (u & v) | (~u & w);
|
|
}
|
|
|
|
private int G(int u, int v, int w) {
|
|
return (u & w) | (v & ~w);
|
|
}
|
|
|
|
private int H(int u, int v, int w) {
|
|
return u ^ v ^ w;
|
|
}
|
|
|
|
private int K(int u, int v, int w) {
|
|
return v ^ (u | ~w);
|
|
}
|
|
|
|
protected void processBlock() {
|
|
int a = H1;
|
|
int b = H2;
|
|
int c = H3;
|
|
int d = H4;
|
|
|
|
//
|
|
// Round 1 - F cycle, 16 times.
|
|
//
|
|
a = rotateLeft(a + F(b, c, d) + X[0] + 0xd76aa478, S11) + b;
|
|
d = rotateLeft(d + F(a, b, c) + X[1] + 0xe8c7b756, S12) + a;
|
|
c = rotateLeft(c + F(d, a, b) + X[2] + 0x242070db, S13) + d;
|
|
b = rotateLeft(b + F(c, d, a) + X[3] + 0xc1bdceee, S14) + c;
|
|
a = rotateLeft(a + F(b, c, d) + X[4] + 0xf57c0faf, S11) + b;
|
|
d = rotateLeft(d + F(a, b, c) + X[5] + 0x4787c62a, S12) + a;
|
|
c = rotateLeft(c + F(d, a, b) + X[6] + 0xa8304613, S13) + d;
|
|
b = rotateLeft(b + F(c, d, a) + X[7] + 0xfd469501, S14) + c;
|
|
a = rotateLeft(a + F(b, c, d) + X[8] + 0x698098d8, S11) + b;
|
|
d = rotateLeft(d + F(a, b, c) + X[9] + 0x8b44f7af, S12) + a;
|
|
c = rotateLeft(c + F(d, a, b) + X[10] + 0xffff5bb1, S13) + d;
|
|
b = rotateLeft(b + F(c, d, a) + X[11] + 0x895cd7be, S14) + c;
|
|
a = rotateLeft(a + F(b, c, d) + X[12] + 0x6b901122, S11) + b;
|
|
d = rotateLeft(d + F(a, b, c) + X[13] + 0xfd987193, S12) + a;
|
|
c = rotateLeft(c + F(d, a, b) + X[14] + 0xa679438e, S13) + d;
|
|
b = rotateLeft(b + F(c, d, a) + X[15] + 0x49b40821, S14) + c;
|
|
|
|
//
|
|
// Round 2 - G cycle, 16 times.
|
|
//
|
|
a = rotateLeft(a + G(b, c, d) + X[1] + 0xf61e2562, S21) + b;
|
|
d = rotateLeft(d + G(a, b, c) + X[6] + 0xc040b340, S22) + a;
|
|
c = rotateLeft(c + G(d, a, b) + X[11] + 0x265e5a51, S23) + d;
|
|
b = rotateLeft(b + G(c, d, a) + X[0] + 0xe9b6c7aa, S24) + c;
|
|
a = rotateLeft(a + G(b, c, d) + X[5] + 0xd62f105d, S21) + b;
|
|
d = rotateLeft(d + G(a, b, c) + X[10] + 0x02441453, S22) + a;
|
|
c = rotateLeft(c + G(d, a, b) + X[15] + 0xd8a1e681, S23) + d;
|
|
b = rotateLeft(b + G(c, d, a) + X[4] + 0xe7d3fbc8, S24) + c;
|
|
a = rotateLeft(a + G(b, c, d) + X[9] + 0x21e1cde6, S21) + b;
|
|
d = rotateLeft(d + G(a, b, c) + X[14] + 0xc33707d6, S22) + a;
|
|
c = rotateLeft(c + G(d, a, b) + X[3] + 0xf4d50d87, S23) + d;
|
|
b = rotateLeft(b + G(c, d, a) + X[8] + 0x455a14ed, S24) + c;
|
|
a = rotateLeft(a + G(b, c, d) + X[13] + 0xa9e3e905, S21) + b;
|
|
d = rotateLeft(d + G(a, b, c) + X[2] + 0xfcefa3f8, S22) + a;
|
|
c = rotateLeft(c + G(d, a, b) + X[7] + 0x676f02d9, S23) + d;
|
|
b = rotateLeft(b + G(c, d, a) + X[12] + 0x8d2a4c8a, S24) + c;
|
|
|
|
//
|
|
// Round 3 - H cycle, 16 times.
|
|
//
|
|
a = rotateLeft(a + H(b, c, d) + X[5] + 0xfffa3942, S31) + b;
|
|
d = rotateLeft(d + H(a, b, c) + X[8] + 0x8771f681, S32) + a;
|
|
c = rotateLeft(c + H(d, a, b) + X[11] + 0x6d9d6122, S33) + d;
|
|
b = rotateLeft(b + H(c, d, a) + X[14] + 0xfde5380c, S34) + c;
|
|
a = rotateLeft(a + H(b, c, d) + X[1] + 0xa4beea44, S31) + b;
|
|
d = rotateLeft(d + H(a, b, c) + X[4] + 0x4bdecfa9, S32) + a;
|
|
c = rotateLeft(c + H(d, a, b) + X[7] + 0xf6bb4b60, S33) + d;
|
|
b = rotateLeft(b + H(c, d, a) + X[10] + 0xbebfbc70, S34) + c;
|
|
a = rotateLeft(a + H(b, c, d) + X[13] + 0x289b7ec6, S31) + b;
|
|
d = rotateLeft(d + H(a, b, c) + X[0] + 0xeaa127fa, S32) + a;
|
|
c = rotateLeft(c + H(d, a, b) + X[3] + 0xd4ef3085, S33) + d;
|
|
b = rotateLeft(b + H(c, d, a) + X[6] + 0x04881d05, S34) + c;
|
|
a = rotateLeft(a + H(b, c, d) + X[9] + 0xd9d4d039, S31) + b;
|
|
d = rotateLeft(d + H(a, b, c) + X[12] + 0xe6db99e5, S32) + a;
|
|
c = rotateLeft(c + H(d, a, b) + X[15] + 0x1fa27cf8, S33) + d;
|
|
b = rotateLeft(b + H(c, d, a) + X[2] + 0xc4ac5665, S34) + c;
|
|
|
|
//
|
|
// Round 4 - K cycle, 16 times.
|
|
//
|
|
a = rotateLeft(a + K(b, c, d) + X[0] + 0xf4292244, S41) + b;
|
|
d = rotateLeft(d + K(a, b, c) + X[7] + 0x432aff97, S42) + a;
|
|
c = rotateLeft(c + K(d, a, b) + X[14] + 0xab9423a7, S43) + d;
|
|
b = rotateLeft(b + K(c, d, a) + X[5] + 0xfc93a039, S44) + c;
|
|
a = rotateLeft(a + K(b, c, d) + X[12] + 0x655b59c3, S41) + b;
|
|
d = rotateLeft(d + K(a, b, c) + X[3] + 0x8f0ccc92, S42) + a;
|
|
c = rotateLeft(c + K(d, a, b) + X[10] + 0xffeff47d, S43) + d;
|
|
b = rotateLeft(b + K(c, d, a) + X[1] + 0x85845dd1, S44) + c;
|
|
a = rotateLeft(a + K(b, c, d) + X[8] + 0x6fa87e4f, S41) + b;
|
|
d = rotateLeft(d + K(a, b, c) + X[15] + 0xfe2ce6e0, S42) + a;
|
|
c = rotateLeft(c + K(d, a, b) + X[6] + 0xa3014314, S43) + d;
|
|
b = rotateLeft(b + K(c, d, a) + X[13] + 0x4e0811a1, S44) + c;
|
|
a = rotateLeft(a + K(b, c, d) + X[4] + 0xf7537e82, S41) + b;
|
|
d = rotateLeft(d + K(a, b, c) + X[11] + 0xbd3af235, S42) + a;
|
|
c = rotateLeft(c + K(d, a, b) + X[2] + 0x2ad7d2bb, S43) + d;
|
|
b = rotateLeft(b + K(c, d, a) + X[9] + 0xeb86d391, S44) + c;
|
|
|
|
H1 += a;
|
|
H2 += b;
|
|
H3 += c;
|
|
H4 += d;
|
|
|
|
//
|
|
// reset the offset and clean out the word buffer.
|
|
//
|
|
xOff = 0;
|
|
for (int i = 0; i != X.length; i++) {
|
|
X[i] = 0;
|
|
}
|
|
}
|
|
|
|
} |