/* * Copyright 2014-2015 Jeff Hain * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * ============================================================================= * Notice of fdlibm package this program is partially derived from: * * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ============================================================================= */ package net.jafama; /** * Stuffs for FastMath and StrictFastMath. */ abstract class CmnFastMath { /* * For trigonometric functions, use of look-up tables and Taylor-Lagrange formula * with 4 derivatives (more take longer to compute and don't add much accuracy, * less require larger tables (which use more memory, take more time to initialize, * and are slower to access (at least on the machine they were developed on))). * * For angles reduction of cos/sin/tan functions: * - for small values, instead of reducing angles, and then computing the best index * for look-up tables, we compute this index right away, and use it for reduction, * - for large values, treatments derived from fdlibm package are used, as done in * java.lang.Math. They are faster but still "slow", so if you work with * large numbers and need speed over accuracy for them, you might want to use * normalizeXXXFast treatments before your function, or modify cos/sin/tan * so that they call the fast normalization treatments instead of the accurate ones. * NB: If an angle is huge (like PI*1e20), in double precision format its last digits * are zeros, which most likely is not the case for the intended value, and doing * an accurate reduction on a very inaccurate value is most likely pointless. * But it gives some sort of coherence that could be needed in some cases. * * Multiplication on double appears to be about as fast (or not much slower) than call * to [], and regrouping some doubles in a private class, to use * index only once, does not seem to speed things up, so: * - for uniformly tabulated values, to retrieve the parameter corresponding to * an index, we recompute it rather than using an array to store it, * - for cos/sin, we recompute derivatives divided by (multiplied by inverse of) * factorial each time, rather than storing them in arrays. * * Lengths of look-up tables are usually of the form 2^n+1, for their values to be * of the form ( * k/2^n, k in 0 .. 2^n), so that particular values * (PI/2, etc.) are "exactly" computed, as well as for other reasons. * * Tables are put in specific inner classes, to be lazily initialized. * Always doing strict tables initialization, even if StrictFastMath delegates * to StrictMath and doesn't use tables, which makes tables initialization a bit * slower but code simpler. * Using redefined pure Java treatments during tables initialization, * instead of Math or StrictMath ones (even asin(double)), can be very slow, * because class loading is likely not to be optimized. * * Most math treatments I could find on the web, including "fast" ones, * usually take care of special cases (NaN, etc.) at the beginning, and * then deal with the general case, which adds a useless overhead for the * general (and common) case. In this class, special cases are only dealt * with when needed, and if the general case does not already handle them. */ /* * Regarding strictfp-ness: * * Switching from/to strictfp has some overhead, so we try to only * strictfp-ize when needed (or when clueless). * Compile-time constants are computed in a FP-strict way, so no need * to make this whole class strictfp. */ //-------------------------------------------------------------------------- // CONFIGURATION //-------------------------------------------------------------------------- /* * FastMath */ static final boolean FM_USE_JDK_MATH = getBooleanProperty("jafama.usejdk", false); /** * Used for both FastMath.log(double) and FastMath.log10(double). */ static final boolean FM_USE_REDEFINED_LOG = getBooleanProperty("jafama.fastlog", false); static final boolean FM_USE_REDEFINED_SQRT = getBooleanProperty("jafama.fastsqrt", false); /** * Set it to true if FastMath.sqrt(double) is slow * (more tables, but less calls to FastMath.sqrt(double)). */ static final boolean FM_USE_POWTABS_FOR_ASIN = false; /* * StrictFastMath */ static final boolean SFM_USE_JDK_MATH = getBooleanProperty("jafama.strict.usejdk", false); /** * Used for both StrictFastMath.log(double) and StrictFastMath.log10(double). * True by default because the StrictMath implementations can be slow. */ static final boolean SFM_USE_REDEFINED_LOG = getBooleanProperty("jafama.strict.fastlog", true); static final boolean SFM_USE_REDEFINED_SQRT = getBooleanProperty("jafama.strict.fastsqrt", false); /** * Set it to true if StrictFastMath.sqrt(double) is slow * (more tables, but less calls to StrictFastMath.sqrt(double)). */ static final boolean SFM_USE_POWTABS_FOR_ASIN = false; /* * Common to FastMath and StrictFastMath. */ /** * Using two pow tab can just make things barely faster, * and could relatively hurt in case of cache-misses, * especially for methods that otherwise wouldn't rely * on any tab, so we don't use it. */ static final boolean USE_TWO_POW_TAB = false; /** * Because on some architectures, some casts can be slow, * especially for large values. * Might make things a bit slower for latest architectures, * but not as much as it makes them faster for older ones. */ static final boolean ANTI_SLOW_CASTS = true; /** * If some methods get JIT-optimized, they might crash * if they contain "(var == xxx)" with var being NaN * (can happen with Java 6u29). * * The crash does not happen if we replace "==" with "<" or ">". * * Only the code that has been observed to trigger the bug * has been modified. */ static final boolean ANTI_JIT_OPTIM_CRASH_ON_NAN = true; //-------------------------------------------------------------------------- // GENERAL CONSTANTS //-------------------------------------------------------------------------- /** * Closest double approximation of e. */ public static final double E = Math.E; /** * Closest double approximation of pi, which is inferior to mathematical pi: * pi ~= 3.14159265358979323846... * PI ~= 3.141592653589793 */ public static final double PI = Math.PI; /** * High double approximation of pi, which is further from pi * than the low approximation PI: * pi ~= 3.14159265358979323846... * PI ~= 3.141592653589793 * PI_SUP ~= 3.1415926535897936 */ public static final double PI_SUP = Double.longBitsToDouble(Double.doubleToRawLongBits(Math.PI)+1); static final double ONE_DIV_F2 = 1/2.0; static final double ONE_DIV_F3 = 1/6.0; static final double ONE_DIV_F4 = 1/24.0; static final float TWO_POW_23_F = (float)NumbersUtils.twoPow(23); static final double TWO_POW_24 = NumbersUtils.twoPow(24); private static final double TWO_POW_N24 = NumbersUtils.twoPow(-24); static final double TWO_POW_26 = NumbersUtils.twoPow(26); static final double TWO_POW_N26 = NumbersUtils.twoPow(-26); // First double value (from zero) such as (value+-1/value == value). static final double TWO_POW_27 = NumbersUtils.twoPow(27); static final double TWO_POW_N27 = NumbersUtils.twoPow(-27); static final double TWO_POW_N28 = NumbersUtils.twoPow(-28); static final double TWO_POW_52 = NumbersUtils.twoPow(52); static final double TWO_POW_N55 = NumbersUtils.twoPow(-55); static final double TWO_POW_66 = NumbersUtils.twoPow(66); static final double TWO_POW_512 = NumbersUtils.twoPow(512); static final double TWO_POW_N512 = NumbersUtils.twoPow(-512); /** * Double.MIN_NORMAL since Java 6. */ static final double DOUBLE_MIN_NORMAL = Double.longBitsToDouble(0x0010000000000000L); // 2.2250738585072014E-308 // Not storing float/double mantissa size in constants, // for 23 and 52 are shorter to read and more // bitwise-explicit than some constant's name. static final int MIN_DOUBLE_EXPONENT = -1074; static final int MIN_DOUBLE_NORMAL_EXPONENT = -1022; static final int MAX_DOUBLE_EXPONENT = 1023; static final int MIN_FLOAT_NORMAL_EXPONENT = -126; static final int MAX_FLOAT_EXPONENT = 127; private static final double SQRT_2 = StrictMath.sqrt(2.0); static final double LOG_2 = StrictMath.log(2.0); static final double LOG_TWO_POW_27 = StrictMath.log(TWO_POW_27); static final double LOG_DOUBLE_MAX_VALUE = StrictMath.log(Double.MAX_VALUE); static final double INV_LOG_10 = 1.0/StrictMath.log(10.0); static final double DOUBLE_BEFORE_60 = Double.longBitsToDouble(Double.doubleToRawLongBits(60.0)-1); //-------------------------------------------------------------------------- // CONSTANTS FOR NORMALIZATIONS //-------------------------------------------------------------------------- /** * Table of constants for 1/(PI/2), 282 Hex digits (enough for normalizing doubles). * 1/(PI/2) approximation = sum of TWO_OVER_PI_TAB[i]*2^(-24*(i+1)). * * double and not int, to avoid int-to-double cast during computations. */ private static final double TWO_OVER_PI_TAB[] = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xe00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991d6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B}; /* * Constants for PI/2. Only the 23 most significant bits of each mantissa are used. * 2*PI approximation = sum of TWOPI_TAB. */ private static final double PIO2_TAB0 = Double.longBitsToDouble(0x3FF921FB40000000L); private static final double PIO2_TAB1 = Double.longBitsToDouble(0x3E74442D00000000L); private static final double PIO2_TAB2 = Double.longBitsToDouble(0x3CF8469880000000L); private static final double PIO2_TAB3 = Double.longBitsToDouble(0x3B78CC5160000000L); private static final double PIO2_TAB4 = Double.longBitsToDouble(0x39F01B8380000000L); private static final double PIO2_TAB5 = Double.longBitsToDouble(0x387A252040000000L); static final double PIO2_INV = Double.longBitsToDouble(0x3FE45F306DC9C883L); // 6.36619772367581382433e-01 53 bits of 2/pi static final double PIO2_HI = Double.longBitsToDouble(0x3FF921FB54400000L); // 1.57079632673412561417e+00 first 33 bits of pi/2 static final double PIO2_LO = Double.longBitsToDouble(0x3DD0B4611A626331L); // 6.07710050650619224932e-11 pi/2 - PIO2_HI static final double PI_INV = PIO2_INV/2; static final double PI_HI = 2*PIO2_HI; static final double PI_LO = 2*PIO2_LO; static final double TWOPI_INV = PIO2_INV/4; static final double TWOPI_HI = 4*PIO2_HI; static final double TWOPI_LO = 4*PIO2_LO; /** * Bit = 0 where quadrant is encoded in remainder bits. */ private static final long QUADRANT_BITS_0_MASK = 0xCFFFFFFFFFFFFFFFL; /** * Remainder bits where quadrant is encoded, 0 elsewhere. */ private static final long QUADRANT_PLACE_BITS = 0x3000000000000000L; /** * fdlibm uses 2^19*PI/2 here. * With 2^18*PI/2 we would be more accurate, for example when normalizing * 822245.903631403, which is close to 2^19*PI/2, but we are still in * our accuracy tolerance with fdlibm's value (but not 2^20*PI/2) so we * stick to it, to help being faster than (Strict)Math for values in * [2^18*PI/2,2^19*PI/2]. * * For tests, can use a smaller value, for heavy remainder * not to only be used with huge values. */ static final double NORMALIZE_ANGLE_MAX_MEDIUM_DOUBLE_PIO2 = StrictMath.pow(2.0,19.0)*(Math.PI/2); /** * 2*Math.PI, normalized into [-PI,PI], as returned by * StrictMath.asin(StrictMath.sin(2*Math.PI)) * (asin behaves as identity for this). * * NB: NumbersUtils.minus2PI(2*Math.PI) returns -2.449293598153844E-16, * which is different due to not using an accurate enough definition of PI. */ static final double TWO_MATH_PI_IN_MINUS_PI_PI = -2.4492935982947064E-16; //-------------------------------------------------------------------------- // CONSTANTS AND TABLES FOR SIN AND COS //-------------------------------------------------------------------------- static final int SIN_COS_TABS_SIZE = (1<>9) / SIN_COS_INDEXER) * 0.99; //-------------------------------------------------------------------------- // CONSTANTS AND TABLES FOR TAN //-------------------------------------------------------------------------- // We use the following formula: // 1) tan(-x) = -tan(x) // 2) tan(x) = 1/tan(PI/2-x) // ---> we only have to compute tan(x) on [0,A] with PI/4<=A= 45deg, and supposed to be >= 51.4deg, as fdlibm code is not * supposed to work with values inferior to that (51.4deg is about * (PI/2-Double.longBitsToDouble(0x3FE5942800000000L))). */ static final double TAN_MAX_VALUE_FOR_TABS = StrictMath.toRadians(77.0); static final int TAN_TABS_SIZE = (int)((TAN_MAX_VALUE_FOR_TABS/(Math.PI/2)) * (TAN_VIRTUAL_TABS_SIZE-1)) + 1; static final double TAN_DELTA_HI = PIO2_HI/(TAN_VIRTUAL_TABS_SIZE-1); static final double TAN_DELTA_LO = PIO2_LO/(TAN_VIRTUAL_TABS_SIZE-1); static final double TAN_INDEXER = 1/(TAN_DELTA_HI+TAN_DELTA_LO); static final class MyTTan { static final double[] tanTab = new double[TAN_TABS_SIZE]; static final double[] tanDer1DivF1Tab = new double[TAN_TABS_SIZE]; static final double[] tanDer2DivF2Tab = new double[TAN_TABS_SIZE]; static final double[] tanDer3DivF3Tab = new double[TAN_TABS_SIZE]; static final double[] tanDer4DivF4Tab = new double[TAN_TABS_SIZE]; static { init(); } private static strictfp void init() { for (int i=0;i>9) / TAN_INDEXER) * 0.99); //-------------------------------------------------------------------------- // CONSTANTS AND TABLES FOR ACOS, ASIN //-------------------------------------------------------------------------- // We use the following formula: // 1) acos(x) = PI/2 - asin(x) // 2) asin(-x) = -asin(x) // ---> we only have to compute asin(x) on [0,1]. // For values not close to +-1, we use look-up tables; // for values near +-1, we use code derived from fdlibm. /** * Supposed to be >= sin(77.2deg), as fdlibm code is supposed to work with values > 0.975, * but seems to work well enough as long as value >= sin(25deg). */ static final double ASIN_MAX_VALUE_FOR_TABS = StrictMath.sin(StrictMath.toRadians(73.0)); static final int ASIN_TABS_SIZE = (1< we only have to compute atan(x) on [0,+Infinity[. // For values corresponding to angles not close to +-PI/2, we use look-up tables; // for values corresponding to angles near +-PI/2, we use code derived from fdlibm. /** * Supposed to be >= tan(67.7deg), as fdlibm code is supposed to work with values > 2.4375. */ static final double ATAN_MAX_VALUE_FOR_TABS = StrictMath.tan(StrictMath.toRadians(74.0)); static final int ATAN_TABS_SIZE = (1<>SQRT_LO_BITS)); for (int i=1;i>CBRT_LO_BITS)); for (int i=1;i= MIN_DOUBLE_EXPONENT) { if (power <= MAX_DOUBLE_EXPONENT) { // Normal or subnormal. return MyTTwoPow.twoPowTab[power-MIN_DOUBLE_EXPONENT]; } else { // Overflow. return Double.POSITIVE_INFINITY; } } else { // Underflow. return 0.0; } } else { return NumbersUtils.twoPow(power); } } /** * @param value An int value. * @return value*value. */ public static int pow2(int value) { return value*value; } /** * @param value A long value. * @return value*value. */ public static long pow2(long value) { return value*value; } /** * @param value An int value. * @return value*value*value. */ public static int pow3(int value) { return value*value*value; } /** * @param value A long value. * @return value*value*value. */ public static long pow3(long value) { return value*value*value; } /* * absolute values */ /** * @param value An int value. * @return The absolute value, except if value is Integer.MIN_VALUE, for which it returns Integer.MIN_VALUE. */ public static int abs(int value) { if (FM_USE_JDK_MATH || SFM_USE_JDK_MATH) { return Math.abs(value); } return NumbersUtils.abs(value); } /** * @param value A long value. * @return The absolute value, except if value is Long.MIN_VALUE, for which it returns Long.MIN_VALUE. */ public static long abs(long value) { if (FM_USE_JDK_MATH || SFM_USE_JDK_MATH) { return Math.abs(value); } return NumbersUtils.abs(value); } /* * close values */ /** * @param value A long value. * @return The specified value as int. * @throws ArithmeticException if the specified value is not in [Integer.MIN_VALUE,Integer.MAX_VALUE] range. */ public static int toIntExact(long value) { return NumbersUtils.asInt(value); } /** * @param value A long value. * @return The closest int value in [Integer.MIN_VALUE,Integer.MAX_VALUE] range. */ public static int toInt(long value) { return NumbersUtils.toInt(value); } /* * ranges */ /** * @param min An int value. * @param max An int value. * @param value An int value. * @return minValue if value < minValue, maxValue if value > maxValue, value otherwise. */ public static int toRange(int min, int max, int value) { return NumbersUtils.toRange(min, max, value); } /** * @param min A long value. * @param max A long value. * @param value A long value. * @return min if value < min, max if value > max, value otherwise. */ public static long toRange(long min, long max, long value) { return NumbersUtils.toRange(min, max, value); } /* * unary operators (increment,decrement,negate) */ /** * @param value An int value. * @return The argument incremented by one. * @throws ArithmeticException if the mathematical result * is not in int range. */ public static int incrementExact(int value) { if (value == Integer.MAX_VALUE) { throw new ArithmeticException("integer overflow"); } return value + 1; } /** * @param value A long value. * @return The argument incremented by one. * @throws ArithmeticException if the mathematical result * is not in long range. */ public static long incrementExact(long value) { if (value == Long.MAX_VALUE) { throw new ArithmeticException("long overflow"); } return value + 1L; } /** * @param value An int value. * @return The argument incremented by one, or the argument * if the mathematical result is not in int range. */ public static int incrementBounded(int value) { if (value == Integer.MAX_VALUE) { return value; } return value + 1; } /** * @param value A long value. * @return The argument incremented by one, or the argument * if the mathematical result is not in long range. */ public static long incrementBounded(long value) { if (value == Long.MAX_VALUE) { return value; } return value + 1L; } /** * @param value An int value. * @return The argument decremented by one. * @throws ArithmeticException if the mathematical result * is not in int range. */ public static int decrementExact(int value) { if (value == Integer.MIN_VALUE) { throw new ArithmeticException("integer overflow"); } return value - 1; } /** * @param value A long value. * @return The argument decremented by one. * @throws ArithmeticException if the mathematical result * is not in long range. */ public static long decrementExact(long value) { if (value == Long.MIN_VALUE) { throw new ArithmeticException("long overflow"); } return value - 1L; } /** * @param value An int value. * @return The argument decremented by one, or the argument * if the mathematical result is not in int range. */ public static int decrementBounded(int value) { if (value == Integer.MIN_VALUE) { return value; } return value - 1; } /** * @param value A long value. * @return The argument decremented by one, or the argument * if the mathematical result is not in long range. */ public static long decrementBounded(long value) { if (value == Long.MIN_VALUE) { return value; } return value - 1L; } /** * @param value An int value. * @return The argument negated. * @throws ArithmeticException if the mathematical result * is not in int range. */ public static int negateExact(int value) { if (value == Integer.MIN_VALUE) { throw new ArithmeticException("integer overflow"); } return -value; } /** * @param value A long value. * @return The argument negated. * @throws ArithmeticException if the mathematical result * is not in long range. */ public static long negateExact(long value) { if (value == Long.MIN_VALUE) { throw new ArithmeticException("long overflow"); } return -value; } /** * @param value An int value. * @return The argument negated, or Integer.MAX_VALUE * if the argument is Integer.MIN_VALUE. */ public static int negateBounded(int value) { if (value == Integer.MIN_VALUE) { return Integer.MAX_VALUE; } return -value; } /** * @param value A long value. * @return The argument negated, or Long.MAX_VALUE * if the argument is Long.MIN_VALUE. */ public static long negateBounded(long value) { if (value == Long.MIN_VALUE) { return Long.MAX_VALUE; } return -value; } /* * binary operators (+,-,*) */ /** * @param a An int value. * @param b An int value. * @return The mathematical result of a+b. * @throws ArithmeticException if the mathematical result of a+b is not in [Integer.MIN_VALUE,Integer.MAX_VALUE] range. */ public static int addExact(int a, int b) { return NumbersUtils.plusExact(a, b); } /** * @param a A long value. * @param b A long value. * @return The mathematical result of a+b. * @throws ArithmeticException if the mathematical result of a+b is not in [Long.MIN_VALUE,Long.MAX_VALUE] range. */ public static long addExact(long a, long b) { return NumbersUtils.plusExact(a, b); } /** * @param a An int value. * @param b An int value. * @return The int value of [Integer.MIN_VALUE,Integer.MAX_VALUE] range which is the closest to mathematical result of a+b. */ public static int addBounded(int a, int b) { return NumbersUtils.plusBounded(a, b); } /** * @param a A long value. * @param b A long value. * @return The long value of [Long.MIN_VALUE,Long.MAX_VALUE] range which is the closest to mathematical result of a+b. */ public static long addBounded(long a, long b) { return NumbersUtils.plusBounded(a, b); } /** * @param a An int value. * @param b An int value. * @return The mathematical result of a-b. * @throws ArithmeticException if the mathematical result of a-b is not in [Integer.MIN_VALUE,Integer.MAX_VALUE] range. */ public static int subtractExact(int a, int b) { return NumbersUtils.minusExact(a, b); } /** * @param a A long value. * @param b A long value. * @return The mathematical result of a-b. * @throws ArithmeticException if the mathematical result of a-b is not in [Long.MIN_VALUE,Long.MAX_VALUE] range. */ public static long subtractExact(long a, long b) { return NumbersUtils.minusExact(a, b); } /** * @param a An int value. * @param b An int value. * @return The int value of [Integer.MIN_VALUE,Integer.MAX_VALUE] range which is the closest to mathematical result of a-b. */ public static int subtractBounded(int a, int b) { return NumbersUtils.minusBounded(a, b); } /** * @param a A long value. * @param b A long value. * @return The long value of [Long.MIN_VALUE,Long.MAX_VALUE] range which is the closest to mathematical result of a-b. */ public static long subtractBounded(long a, long b) { return NumbersUtils.minusBounded(a, b); } /** * @param a An int value. * @param b An int value. * @return The mathematical result of a*b. * @throws ArithmeticException if the mathematical result of a*b is not in [Integer.MIN_VALUE,Integer.MAX_VALUE] range. */ public static int multiplyExact(int a, int b) { return NumbersUtils.timesExact(a, b); } /** * @param a A long value. * @param b An int value. * @return The mathematical result of a*b. * @throws ArithmeticException if the mathematical result of a*b is not in [Long.MIN_VALUE,Long.MAX_VALUE] range. */ public static long multiplyExact(long a, int b) { return NumbersUtils.timesExact(a, (long) b); } /** * @param a A long value. * @param b A long value. * @return The mathematical result of a*b. * @throws ArithmeticException if the mathematical result of a*b is not in [Long.MIN_VALUE,Long.MAX_VALUE] range. */ public static long multiplyExact(long a, long b) { return NumbersUtils.timesExact(a, b); } /** * @param a An int value. * @param b An int value. * @return The int value of [Integer.MIN_VALUE,Integer.MAX_VALUE] range which is the closest to mathematical result of a*b. */ public static int multiplyBounded(int a, int b) { return NumbersUtils.timesBounded(a, b); } /** * @param a A long value. * @param b An int value. * @return The long value of [Long.MIN_VALUE,Long.MAX_VALUE] range which is the closest to mathematical result of a*b. */ public static long multiplyBounded(long a, int b) { return NumbersUtils.timesBounded(a, (long) b); } /** * @param a A long value. * @param b A long value. * @return The long value of [Long.MIN_VALUE,Long.MAX_VALUE] range which is the closest to mathematical result of a*b. */ public static long multiplyBounded(long a, long b) { return NumbersUtils.timesBounded(a, b); } /** * @param x An int value. * @param y An int value. * @return The mathematical product as a long. */ public static long multiplyFull(int x, int y) { return ((long) x) * ((long) y); } /** * @param x A long value. * @param y A long value. * @return The most significant 64 bits of the 128-bit product of two 64-bit factors. */ public static long multiplyHigh(long x, long y) { if ((x|y) < 0) { // Use technique from section 8-2 of Henry S. Warren, Jr., // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174. long x1 = (x >> 32); long y1 = (y >> 32); long x2 = (x & 0xFFFFFFFFL); long y2 = (y & 0xFFFFFFFFL); long z2 = x2 * y2; long t = x1 * y2 + (z2 >>> 32); long z1 = (t & 0xFFFFFFFFL) + x2 * y1; long z0 = (t >> 32); return x1 * y1 + z0 + (z1 >> 32); } else { // Use Karatsuba technique with two base 2^32 digits. long x1 = (x >>> 32); long y1 = (y >>> 32); long x2 = (x & 0xFFFFFFFFL); long y2 = (y & 0xFFFFFFFFL); long A = x1 * y1; long B = x2 * y2; long C = (x1 + x2) * (y1 + y2); long K = C - A - B; return (((B >>> 32) + K) >>> 32) + A; } } /* * binary operators (/,%) */ /** * Returns the largest int <= dividend/divisor. * * Unlike "/" operator, which rounds towards 0, this division * rounds towards -Infinity (which give different result * when the exact result is negative). * * @param x The dividend. * @param y The divisor. * @return The largest int <= dividend/divisor, unless dividend is * Integer.MIN_VALUE and divisor is -1, in which case * Integer.MIN_VALUE is returned. * @throws ArithmeticException if the divisor is zero. */ public static int floorDiv(int x, int y) { int r = x / y; // If the signs are different and modulo not zero, rounding down. if (((x ^ y) < 0) && ((r * y) != x)) { r--; } return r; } /** * Returns the largest long <= dividend/divisor. * * Unlike "/" operator, which rounds towards 0, this division * rounds towards -Infinity (which give different result * when the exact result is negative). * * @param x The dividend. * @param y The divisor. * @return The largest long <= dividend/divisor, unless dividend is * Long.MIN_VALUE and divisor is -1, in which case * Long.MIN_VALUE is returned. * @throws ArithmeticException if the divisor is zero. */ public static long floorDiv(long x, int y) { return floorDiv(x, (long) y); } /** * Returns the largest long <= dividend/divisor. * * Unlike "/" operator, which rounds towards 0, this division * rounds towards -Infinity (which give different result * when the exact result is negative). * * @param x The dividend. * @param y The divisor. * @return The largest long <= dividend/divisor, unless dividend is * Long.MIN_VALUE and divisor is -1, in which case * Long.MIN_VALUE is returned. * @throws ArithmeticException if the divisor is zero. */ public static long floorDiv(long x, long y) { long r = x / y; // If the signs are different and modulo not zero, rounding down. if (((x ^ y) < 0) && ((r * y) != x)) { r--; } return r; } /** * Returns the floor modulus, which is "x - floorDiv(x,y) * y", * has the same sign as y, and is in ]-abs(y),abs(y)[. * * The relationship between floorMod and floorDiv is the same * than between "%" and "/". * * @param x The dividend. * @param y The divisor. * @return The floor modulus, i.e. "x - (floorDiv(x, y) * y)". * @throws ArithmeticException if the divisor is zero. */ public static int floorMod(int x, int y) { return x - floorDiv(x, y) * y; } /** * Returns the floor modulus, which is "x - floorDiv(x,y) * y", * has the same sign as y, and is in ]-abs(y),abs(y)[. * * The relationship between floorMod and floorDiv is the same * than between "%" and "/". * * @param x The dividend. * @param y The divisor. * @return The floor modulus, i.e. "x - (floorDiv(x, y) * y)". * @throws ArithmeticException if the divisor is zero. */ public static int floorMod(long x, int y) { // No overflow so can cast. return (int) (x - floorDiv(x,y) * y); } /** * Returns the floor modulus, which is "x - floorDiv(x,y) * y", * has the same sign as y, and is in ]-abs(y),abs(y)[. * * The relationship between floorMod and floorDiv is the same * than between "%" and "/". * * @param x The dividend. * @param y The divisor. * @return The floor modulus, i.e. "x - (floorDiv(x, y) * y)". * @throws ArithmeticException if the divisor is zero. */ public static long floorMod(long x, long y) { return x - floorDiv(x, y) * y; } /* * Non-redefined Math public values and treatments. */ public static int min(int a, int b) { return Math.min(a,b); } public static long min(long a, long b) { return Math.min(a,b); } public static int max(int a, int b) { return Math.max(a,b); } public static long max(long a, long b) { return Math.max(a,b); } //-------------------------------------------------------------------------- // PACKAGE-PRIVATE METHODS //-------------------------------------------------------------------------- /** * @param power Must be in normal values range. */ static double twoPowNormal(int power) { if (USE_TWO_POW_TAB) { return MyTTwoPow.twoPowTab[power-MIN_DOUBLE_EXPONENT]; } else { return Double.longBitsToDouble(((long)(power+MAX_DOUBLE_EXPONENT))<<52); } } /** * @param power Must be in normal or subnormal values range. */ static double twoPowNormalOrSubnormal(int power) { if (USE_TWO_POW_TAB) { return MyTTwoPow.twoPowTab[power-MIN_DOUBLE_EXPONENT]; } else { if (power <= -MAX_DOUBLE_EXPONENT) { // Not normal. return Double.longBitsToDouble(0x0008000000000000L>>(-(power+MAX_DOUBLE_EXPONENT))); } else { // Normal. return Double.longBitsToDouble(((long)(power+MAX_DOUBLE_EXPONENT))<<52); } } } static double atan2_pinf_yyy(double y) { if (y == Double.POSITIVE_INFINITY) { return Math.PI/4; } else if (y == Double.NEGATIVE_INFINITY) { return -Math.PI/4; } else if (y > 0.0) { return 0.0; } else if (y < 0.0) { return -0.0; } else { return Double.NaN; } } static double atan2_ninf_yyy(double y) { if (y == Double.POSITIVE_INFINITY) { return 3*Math.PI/4; } else if (y == Double.NEGATIVE_INFINITY) { return -3*Math.PI/4; } else if (y > 0.0) { return Math.PI; } else if (y < 0.0) { return -Math.PI; } else { return Double.NaN; } } static double atan2_yyy_zeroOrNaN(double y, double x) { if (x == 0.0) { if (y == 0.0) { if (signFromBit_antiCyclic(x) < 0) { // x is -0.0 return signFromBit_antiCyclic(y) * Math.PI; } else { // +-0.0 return y; } } if (y > 0.0) { return Math.PI/2; } else if (y < 0.0) { return -Math.PI/2; } else { return Double.NaN; } } else { return Double.NaN; } } /** * At least one of the arguments must be NaN. */ static double hypot_NaN(double xAbs, double yAbs) { if ((xAbs == Double.POSITIVE_INFINITY) || (yAbs == Double.POSITIVE_INFINITY)) { return Double.POSITIVE_INFINITY; } else { return Double.NaN; } } /** * At least one of the arguments must be NaN. */ static double hypot_NaN(double xAbs, double yAbs, double zAbs) { if ((xAbs == Double.POSITIVE_INFINITY) || (yAbs == Double.POSITIVE_INFINITY) || (zAbs == Double.POSITIVE_INFINITY)) { return Double.POSITIVE_INFINITY; } else { return Double.NaN; } } /* * */ /** * @param remainder Must have 1 for 2nd and 3rd exponent bits, which is the * case for heavyRemPiO2 remainders (their absolute values are >= * Double.longBitsToDouble(0x3000000000000000L) * = 1.727233711018889E-77, and even if they were not, turning these * bits from 0 to 1 on decoding would not change the absolute error * much), and also works for +-Infinity or NaN encoding. * @param quadrant Must be in [0,3]. * @return Bits holding remainder, and quadrant instead of * reamainder's 2nd and 3rd exponent bits. */ static long encodeRemainderAndQuadrant(double remainder, int quadrant) { final long bits = Double.doubleToRawLongBits(remainder); return (bits&QUADRANT_BITS_0_MASK)|(((long)quadrant)<<60); } static double decodeRemainder(long bits) { return Double.longBitsToDouble((bits&QUADRANT_BITS_0_MASK)|QUADRANT_PLACE_BITS); } static int decodeQuadrant(long bits) { return ((int)(bits>>60))&3; } /* * JDK-based remainders. * Since a strict one for (% (PI/2)) is needed for heavyRemainderPiO2, * we need it in this class. * Then, for homogeneity, we put them all in this class. * Then, to avoid code duplication for these slow-anyway methods, * we just stick with strict versions, for both FastMath and StrictFastMath. */ /** * @param angle Angle, in radians. * @return Remainder of (angle % (2*PI)), in [-PI,PI]. */ static strictfp double jdkRemainderTwoPi(double angle) { final double sin = StrictMath.sin(angle); final double cos = StrictMath.cos(angle); return StrictMath.atan2(sin, cos); } /** * @param angle Angle, in radians. * @return Remainder of (angle % PI), in [-PI/2,PI/2]. */ static strictfp double jdkRemainderPi(double angle) { final double sin = StrictMath.sin(angle); final double cos = StrictMath.cos(angle); /* * Making sure atan2's result ends up in [-PI/2,PI/2], * i.e. has maximum accuracy. */ return StrictMath.atan2(sin, Math.abs(cos)); } /** * @param angle Angle, in radians. * @return Bits of double corresponding to remainder of (angle % (PI/2)), * in [-PI/4,PI/4], with quadrant encoded in exponent bits. */ static strictfp long jdkRemainderPiO2(double angle, boolean negateRem) { final double sin = StrictMath.sin(angle); final double cos = StrictMath.cos(angle); /* * Computing quadrant first, and then computing * atan2, to make sure its result ends up in [-PI/4,PI/4], * i.e. has maximum accuracy. */ final int q; final double sinForAtan2; final double cosForAtan2; if (cos >= (SQRT_2/2)) { // [-PI/4,PI/4] q = 0; sinForAtan2 = sin; cosForAtan2 = cos; } else if (cos <= -(SQRT_2/2)) { // [3*PI/4,5*PI/4] q = 2; sinForAtan2 = -sin; cosForAtan2 = -cos; } else if (sin > 0.0) { // [PI/4,3*PI/4] q = 1; sinForAtan2 = -cos; cosForAtan2 = sin; } else { // [5*PI/4,7*PI/4] q = 3; sinForAtan2 = cos; cosForAtan2 = -sin; } double fw = StrictMath.atan2(sinForAtan2, cosForAtan2); return encodeRemainderAndQuadrant(negateRem ? -fw : fw, q); } /* * Our remainders implementations. */ /** * @param angle Angle, in radians. Must not be NaN nor +-Infinity. * @return Remainder of (angle % (2*PI)), in [-PI,PI]. */ static strictfp double heavyRemainderTwoPi(double angle) { final long remAndQuad = heavyRemainderPiO2(angle, false); final double rem = decodeRemainder(remAndQuad); final int q = decodeQuadrant(remAndQuad); if (q == 0) { return rem; } else if (q == 1) { return (rem + PIO2_LO) + PIO2_HI; } else if (q == 2) { if (rem < 0.0) { return (rem + PI_LO) + PI_HI; } else { return (rem - PI_LO) - PI_HI; } } else { return (rem - PIO2_LO) - PIO2_HI; } } /** * @param angle Angle, in radians. Must not be NaN nor +-Infinity. * @return Remainder of (angle % PI), in [-PI/2,PI/2]. */ static strictfp double heavyRemainderPi(double angle) { final long remAndQuad = heavyRemainderPiO2(angle, false); final double rem = decodeRemainder(remAndQuad); final int q = decodeQuadrant(remAndQuad); if ((q&1) != 0) { // q is 1 or 3 if (rem < 0.0) { return (rem + PIO2_LO) + PIO2_HI; } else { return (rem - PIO2_LO) - PIO2_HI; } } return rem; } /** * Remainder using an accurate definition of PI. * Derived from a fdlibm treatment called __kernel_rem_pio2. * * Not defining a non-strictfp version for FastMath, to avoid duplicating * its long and messy code, and because it's slow anyway, and should be * rarely used when speed matters. * * @param angle Angle, in radians. Must not be NaN nor +-Infinity. * @param negateRem True if remainder must be negated before encoded into returned long. * @return Bits of double corresponding to remainder of (angle % (PI/2)), * in [-PI/4,PI/4], with quadrant encoded in exponent bits. */ static strictfp long heavyRemainderPiO2(double angle, boolean negateRem) { /* * fdlibm treatments unrolled, to avoid garbage and be OOME-free, * corresponding to: * 1) initial jk = 4 (precision = 3 = 64 bits (extended)), * which is more accurate than using precision = 2 * (53 bits, double), even though we work with doubles * and use strictfp! * 2) max lengths of 8 for f[], 6 for q[], fq[] and iq[]. * 3) at most one recomputation (one goto). * These limitations were experimentally found to * be sufficient for billions of random doubles * of random magnitudes. * For the rare cases that our unrolled treatments can't handle, * we fall back to a JDK-based implementation. */ int n,i,j,ih; double fw; /* * Turning angle into 24-bits integer chunks. * Done outside __kernel_rem_pio2, but we factor it inside our method. */ // Reworking exponent to have a value < 2^24. final long lx = Double.doubleToRawLongBits(angle); final long exp = ((lx>>52)&0x7FF) - (1023+23); double z = Double.longBitsToDouble(lx - (exp<<52)); double x0 = (double)(int)z; z = (z-x0)*TWO_POW_24; double x1 = (double)(int)z; z = (z-x1)*TWO_POW_24; double x2 = (double)(int)z; final int e0 = (int)exp; // in [1,3] final int nx = (x2 == 0.0) ? ((x1 == 0.0) ? 1 : 2) : 3; /* * */ double f0,f1,f2,f3,f4,f5,f6,f7; double q0,q1,q2,q3,q4,q5; int iq0,iq1,iq2,iq3,iq4,iq5; int jk = 4; int jx = nx-1; int jv = Math.max(0,(e0-3)/24); // In fdlibm, this is q0, but we prefer to use q0 for q[0]. int qZero = e0-24*(jv+1); j = jv-jx; if (jx == 0) { f6 = 0.0; f5 = 0.0; f4 = (j >= -4) ? TWO_OVER_PI_TAB[j+4] : 0.0; f3 = (j >= -3) ? TWO_OVER_PI_TAB[j+3] : 0.0; f2 = (j >= -2) ? TWO_OVER_PI_TAB[j+2] : 0.0; f1 = (j >= -1) ? TWO_OVER_PI_TAB[j+1] : 0.0; f0 = (j >= 0) ? TWO_OVER_PI_TAB[j] : 0.0; q0 = x0*f0; q1 = x0*f1; q2 = x0*f2; q3 = x0*f3; q4 = x0*f4; } else if (jx == 1) { f6 = 0.0; f5 = (j >= -5) ? TWO_OVER_PI_TAB[j+5] : 0.0; f4 = (j >= -4) ? TWO_OVER_PI_TAB[j+4] : 0.0; f3 = (j >= -3) ? TWO_OVER_PI_TAB[j+3] : 0.0; f2 = (j >= -2) ? TWO_OVER_PI_TAB[j+2] : 0.0; f1 = (j >= -1) ? TWO_OVER_PI_TAB[j+1] : 0.0; f0 = (j >= 0) ? TWO_OVER_PI_TAB[j] : 0.0; q0 = x0*f1 + x1*f0; q1 = x0*f2 + x1*f1; q2 = x0*f3 + x1*f2; q3 = x0*f4 + x1*f3; q4 = x0*f5 + x1*f4; } else { // jx == 2 f6 = (j >= -6) ? TWO_OVER_PI_TAB[j+6] : 0.0; f5 = (j >= -5) ? TWO_OVER_PI_TAB[j+5] : 0.0; f4 = (j >= -4) ? TWO_OVER_PI_TAB[j+4] : 0.0; f3 = (j >= -3) ? TWO_OVER_PI_TAB[j+3] : 0.0; f2 = (j >= -2) ? TWO_OVER_PI_TAB[j+2] : 0.0; f1 = (j >= -1) ? TWO_OVER_PI_TAB[j+1] : 0.0; f0 = (j >= 0) ? TWO_OVER_PI_TAB[j] : 0.0; q0 = x0*f2 + x1*f1 + x2*f0; q1 = x0*f3 + x1*f2 + x2*f1; q2 = x0*f4 + x1*f3 + x2*f2; q3 = x0*f5 + x1*f4 + x2*f3; q4 = x0*f6 + x1*f5 + x2*f4; } double twoPowQZero = twoPowNormal(qZero); int jz = jk; /* * Unrolling of first round. */ z = q4; fw = (double)(int)(TWO_POW_N24*z); iq0 = (int)(z-TWO_POW_24*fw); z = q3+fw; fw = (double)(int)(TWO_POW_N24*z); iq1 = (int)(z-TWO_POW_24*fw); z = q2+fw; fw = (double)(int)(TWO_POW_N24*z); iq2 = (int)(z-TWO_POW_24*fw); z = q1+fw; fw = (double)(int)(TWO_POW_N24*z); iq3 = (int)(z-TWO_POW_24*fw); z = q0+fw; iq4 = 0; iq5 = 0; z = (z*twoPowQZero) % 8.0; n = (int)z; z -= (double)n; ih = 0; if (qZero > 0) { // Parentheses against code formatter bug. i = (iq3>>(24-qZero)); n += i; iq3 -= i<<(24-qZero); ih = iq3>>(23-qZero); } else if (qZero == 0) { ih = iq3>>23; } else if (z >= 0.5) { ih = 2; } if (ih > 0) { n += 1; // carry = 1 is common case, // so using it as initial value. int carry = 1; if (iq0 != 0) { iq0 = 0x1000000 - iq0; iq1 = 0xFFFFFF - iq1; iq2 = 0xFFFFFF - iq2; iq3 = 0xFFFFFF - iq3; } else if (iq1 != 0) { iq1 = 0x1000000 - iq1; iq2 = 0xFFFFFF - iq2; iq3 = 0xFFFFFF - iq3; } else if (iq2 != 0) { iq2 = 0x1000000 - iq2; iq3 = 0xFFFFFF - iq3; } else if (iq3 != 0) { iq3 = 0x1000000 - iq3; } else { carry = 0; } if (qZero > 0) { if (qZero == 1) { iq3 &= 0x7FFFFF; } else if (qZero == 2) { iq3 &= 0x3FFFFF; } } if (ih == 2) { z = 1.0 - z; if (carry != 0) { z -= twoPowQZero; } } } if (z == 0.0) { if (iq3 == 0) { // With random values of random magnitude, // probability for this to happen seems lower than 1e-6. // jz would be more than just incremented by one, // which our unrolling doesn't support. return jdkRemainderPiO2(angle, negateRem); } if (jx == 0) { f5 = TWO_OVER_PI_TAB[jv+5]; q5 = x0*f5; } else if (jx == 1) { f6 = TWO_OVER_PI_TAB[jv+5]; q5 = x0*f6 + x1*f5; } else { // jx == 2 f7 = TWO_OVER_PI_TAB[jv+5]; q5 = x0*f7 + x1*f6 + x2*f5; } jz++; /* * Unrolling of second round. */ z = q5; fw = (double)(int)(TWO_POW_N24*z); iq0 = (int)(z-TWO_POW_24*fw); z = q4+fw; fw = (double)(int)(TWO_POW_N24*z); iq1 = (int)(z-TWO_POW_24*fw); z = q3+fw; fw = (double)(int)(TWO_POW_N24*z); iq2 = (int)(z-TWO_POW_24*fw); z = q2+fw; fw = (double)(int)(TWO_POW_N24*z); iq3 = (int)(z-TWO_POW_24*fw); z = q1+fw; fw = (double)(int)(TWO_POW_N24*z); iq4 = (int)(z-TWO_POW_24*fw); z = q0+fw; iq5 = 0; z = (z*twoPowQZero) % 8.0; n = (int)z; z -= (double)n; ih = 0; if (qZero > 0) { // Parentheses against code formatter bug. i = (iq4>>(24-qZero)); n += i; iq4 -= i<<(24-qZero); ih = iq4>>(23-qZero); } else if (qZero == 0) { ih = iq4>>23; } else if (z >= 0.5) { ih = 2; } if (ih > 0) { n += 1; // carry = 1 is common case, // so using it as initial value. int carry = 1; if (iq0 != 0) { iq0 = 0x1000000 - iq0; iq1 = 0xFFFFFF - iq1; iq2 = 0xFFFFFF - iq2; iq3 = 0xFFFFFF - iq3; iq4 = 0xFFFFFF - iq4; } else if (iq1 != 0) { iq1 = 0x1000000 - iq1; iq2 = 0xFFFFFF - iq2; iq3 = 0xFFFFFF - iq3; iq4 = 0xFFFFFF - iq4; } else if (iq2 != 0) { iq2 = 0x1000000 - iq2; iq3 = 0xFFFFFF - iq3; iq4 = 0xFFFFFF - iq4; } else if (iq3 != 0) { iq3 = 0x1000000 - iq3; iq4 = 0xFFFFFF - iq4; } else if (iq4 != 0) { iq4 = 0x1000000 - iq4; } else { carry = 0; } if (qZero > 0) { if (qZero == 1) { iq4 &= 0x7FFFFF; } else if (qZero == 2) { iq4 &= 0x3FFFFF; } } if (ih == 2) { z = 1.0 - z; if (carry != 0) { z -= twoPowQZero; } } } if (z == 0.0) { if (iq4 == 0) { // Case not encountered in tests, but still handling it. // Would require a third loop unrolling. return jdkRemainderPiO2(angle, negateRem); } else { // z == 0.0, and iq4 != 0, // so we remove 24 from qZero only once, // but since we no longer use qZero, // we just bother to multiply its 2-power // by 2^-24. jz--; twoPowQZero *= TWO_POW_N24; } } else { // z != 0.0 at end of second round. } } else { // z != 0.0 at end of first round. } /* * After loop. */ if (z != 0.0) { z /= twoPowQZero; if (z >= TWO_POW_24) { fw = (double)(int)(TWO_POW_N24*z); if (jz == jk) { iq4 = (int)(z-TWO_POW_24*fw); jz++; // jz to 5 // Not using qZero anymore so not updating it. twoPowQZero *= TWO_POW_24; iq5 = (int)fw; } else { // jz == jk+1 == 5 // Case not encountered in tests, but still handling it. // Would require use of iq6, with jz = 6. return jdkRemainderPiO2(angle, negateRem); } } else { if (jz == jk) { iq4 = (int)z; } else { // jz == jk+1 == 5 // Case not encountered in tests, but still handling it. iq5 = (int)z; } } } fw = twoPowQZero; if (jz == 5) { q5 = fw*(double)iq5; fw *= TWO_POW_N24; } else { q5 = 0.0; } q4 = fw*(double)iq4; fw *= TWO_POW_N24; q3 = fw*(double)iq3; fw *= TWO_POW_N24; q2 = fw*(double)iq2; fw *= TWO_POW_N24; q1 = fw*(double)iq1; fw *= TWO_POW_N24; q0 = fw*(double)iq0; /* * We just use HI part of the result. */ fw = PIO2_TAB0*q5; fw += PIO2_TAB0*q4 + PIO2_TAB1*q5; fw += PIO2_TAB0*q3 + PIO2_TAB1*q4 + PIO2_TAB2*q5; fw += PIO2_TAB0*q2 + PIO2_TAB1*q3 + PIO2_TAB2*q4 + PIO2_TAB3*q5; fw += PIO2_TAB0*q1 + PIO2_TAB1*q2 + PIO2_TAB2*q3 + PIO2_TAB3*q4 + PIO2_TAB4*q5; fw += PIO2_TAB0*q0 + PIO2_TAB1*q1 + PIO2_TAB2*q2 + PIO2_TAB3*q3 + PIO2_TAB4*q4 + PIO2_TAB5*q5; if ((ih != 0) ^ negateRem) { fw = -fw; } return encodeRemainderAndQuadrant(fw, n&3); } //-------------------------------------------------------------------------- // PRIVATE METHODS //-------------------------------------------------------------------------- /** * Redefined here, to avoid cyclic dependency with (Strict)FastMath. * * @param value A double value. * @return -1 if sign bit is 1, 1 if sign bit is 0. */ private static long signFromBit_antiCyclic(double value) { // Returning a long, to avoid useless cast into int. return ((Double.doubleToRawLongBits(value)>>62)|1); } private static boolean getBooleanProperty( final String key, boolean defaultValue) { final String tmp = System.getProperty(key); if (tmp != null) { return Boolean.parseBoolean(tmp); } else { return defaultValue; } } /** * Use look-up tables size power through this method, * to make sure is it small in case java.lang.Math * is directly used. */ private static int getTabSizePower(int tabSizePower) { return (FM_USE_JDK_MATH && SFM_USE_JDK_MATH) ? Math.min(2, tabSizePower) : tabSizePower; } }