756 lines
24 KiB
Java
756 lines
24 KiB
Java
/*
|
|
* Copyright (C) 2011 The Guava Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package com.google.common.math;
|
|
|
|
import static com.google.common.base.Preconditions.checkArgument;
|
|
import static com.google.common.base.Preconditions.checkNotNull;
|
|
import static com.google.common.math.MathPreconditions.checkNoOverflow;
|
|
import static com.google.common.math.MathPreconditions.checkNonNegative;
|
|
import static com.google.common.math.MathPreconditions.checkPositive;
|
|
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
|
|
import static java.lang.Math.abs;
|
|
import static java.lang.Math.min;
|
|
import static java.math.RoundingMode.HALF_EVEN;
|
|
import static java.math.RoundingMode.HALF_UP;
|
|
|
|
import java.math.BigInteger;
|
|
import java.math.RoundingMode;
|
|
|
|
import com.google.common.annotations.GwtCompatible;
|
|
import com.google.common.annotations.GwtIncompatible;
|
|
import com.google.common.annotations.VisibleForTesting;
|
|
|
|
/**
|
|
* A class for arithmetic on values of type {@code long}. Where possible,
|
|
* methods are defined and named analogously to their {@code BigInteger}
|
|
* counterparts.
|
|
*
|
|
* <p>
|
|
* The implementations of many methods in this class are based on material from
|
|
* Henry S. Warren, Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
|
|
*
|
|
* <p>
|
|
* Similar functionality for {@code int} and for {@link BigInteger} can be found
|
|
* in {@link IntMath} and {@link BigIntegerMath} respectively. For other common
|
|
* operations on {@code long} values, see
|
|
* {@link com.google.common.primitives.Longs}.
|
|
*
|
|
* @author Louis Wasserman
|
|
* @since 11.0
|
|
*/
|
|
@GwtCompatible(emulated = true)
|
|
public final class LongMath {
|
|
// NOTE: Whenever both tests are cheap and functional, it's faster to use &, |
|
|
// instead of &&, ||
|
|
|
|
/**
|
|
* Returns {@code true} if {@code x} represents a power of two.
|
|
*
|
|
* <p>
|
|
* This differs from {@code Long.bitCount(x) == 1}, because
|
|
* {@code Long.bitCount(Long.MIN_VALUE) == 1}, but {@link Long#MIN_VALUE} is not
|
|
* a power of two.
|
|
*/
|
|
public static boolean isPowerOfTwo(long x) {
|
|
return x > 0 & (x & (x - 1)) == 0;
|
|
}
|
|
|
|
/**
|
|
* Returns 1 if {@code x < y} as unsigned longs, and 0 otherwise. Assumes that x
|
|
* - y fits into a signed long. The implementation is branch-free, and
|
|
* benchmarks suggest it is measurably faster than the straightforward ternary
|
|
* expression.
|
|
*/
|
|
@VisibleForTesting
|
|
static int lessThanBranchFree(long x, long y) {
|
|
// Returns the sign bit of x - y.
|
|
return (int) (~~(x - y) >>> (Long.SIZE - 1));
|
|
}
|
|
|
|
/**
|
|
* Returns the base-2 logarithm of {@code x}, rounded according to the specified
|
|
* rounding mode.
|
|
*
|
|
* @throws IllegalArgumentException if {@code x <= 0}
|
|
* @throws ArithmeticException if {@code mode} is
|
|
* {@link RoundingMode#UNNECESSARY} and
|
|
* {@code x} is not a power of two
|
|
*/
|
|
@SuppressWarnings("fallthrough")
|
|
// TODO(kevinb): remove after this warning is disabled globally
|
|
public static int log2(long x, RoundingMode mode) {
|
|
checkPositive("x", x);
|
|
switch (mode) {
|
|
case UNNECESSARY:
|
|
checkRoundingUnnecessary(isPowerOfTwo(x));
|
|
// fall through
|
|
case DOWN:
|
|
case FLOOR:
|
|
return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x);
|
|
|
|
case UP:
|
|
case CEILING:
|
|
return Long.SIZE - Long.numberOfLeadingZeros(x - 1);
|
|
|
|
case HALF_DOWN:
|
|
case HALF_UP:
|
|
case HALF_EVEN:
|
|
// Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
|
|
int leadingZeros = Long.numberOfLeadingZeros(x);
|
|
long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros;
|
|
// floor(2^(logFloor + 0.5))
|
|
int logFloor = (Long.SIZE - 1) - leadingZeros;
|
|
return logFloor + lessThanBranchFree(cmp, x);
|
|
|
|
default:
|
|
throw new AssertionError("impossible");
|
|
}
|
|
}
|
|
|
|
/** The biggest half power of two that fits into an unsigned long */
|
|
@VisibleForTesting
|
|
static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L;
|
|
|
|
/**
|
|
* Returns the base-10 logarithm of {@code x}, rounded according to the
|
|
* specified rounding mode.
|
|
*
|
|
* @throws IllegalArgumentException if {@code x <= 0}
|
|
* @throws ArithmeticException if {@code mode} is
|
|
* {@link RoundingMode#UNNECESSARY} and
|
|
* {@code x} is not a power of ten
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
@SuppressWarnings("fallthrough")
|
|
// TODO(kevinb): remove after this warning is disabled globally
|
|
public static int log10(long x, RoundingMode mode) {
|
|
checkPositive("x", x);
|
|
int logFloor = log10Floor(x);
|
|
long floorPow = powersOf10[logFloor];
|
|
switch (mode) {
|
|
case UNNECESSARY:
|
|
checkRoundingUnnecessary(x == floorPow);
|
|
// fall through
|
|
case FLOOR:
|
|
case DOWN:
|
|
return logFloor;
|
|
case CEILING:
|
|
case UP:
|
|
return logFloor + lessThanBranchFree(floorPow, x);
|
|
case HALF_DOWN:
|
|
case HALF_UP:
|
|
case HALF_EVEN:
|
|
// sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5
|
|
return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x);
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
}
|
|
|
|
@GwtIncompatible("TODO")
|
|
static int log10Floor(long x) {
|
|
/*
|
|
* Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free
|
|
* implementation.
|
|
*
|
|
* The key idea is that based on the number of leading zeros (equivalently,
|
|
* floor(log2(x))), we can narrow the possible floor(log10(x)) values to two.
|
|
* For example, if floor(log2(x)) is 6, then 64 <= x < 128, so floor(log10(x))
|
|
* is either 1 or 2.
|
|
*/
|
|
int y = maxLog10ForLeadingZeros[Long.numberOfLeadingZeros(x)];
|
|
/*
|
|
* y is the higher of the two possible values of floor(log10(x)). If x < 10^y,
|
|
* then we want the lower of the two possible values, or y - 1, otherwise, we
|
|
* want y.
|
|
*/
|
|
return y - lessThanBranchFree(x, powersOf10[y]);
|
|
}
|
|
|
|
// maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i)))
|
|
@VisibleForTesting
|
|
static final byte[] maxLog10ForLeadingZeros = { 19, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14,
|
|
14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5,
|
|
4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0 };
|
|
|
|
@GwtIncompatible("TODO")
|
|
@VisibleForTesting
|
|
static final long[] powersOf10 = { 1L, 10L, 100L, 1000L, 10000L, 100000L, 1000000L, 10000000L, 100000000L,
|
|
1000000000L, 10000000000L, 100000000000L, 1000000000000L, 10000000000000L, 100000000000000L,
|
|
1000000000000000L, 10000000000000000L, 100000000000000000L, 1000000000000000000L };
|
|
|
|
// halfPowersOf10[i] = largest long less than 10^(i + 0.5)
|
|
@GwtIncompatible("TODO")
|
|
@VisibleForTesting
|
|
static final long[] halfPowersOf10 = { 3L, 31L, 316L, 3162L, 31622L, 316227L, 3162277L, 31622776L, 316227766L,
|
|
3162277660L, 31622776601L, 316227766016L, 3162277660168L, 31622776601683L, 316227766016837L,
|
|
3162277660168379L, 31622776601683793L, 316227766016837933L, 3162277660168379331L };
|
|
|
|
/**
|
|
* Returns {@code b} to the {@code k}th power. Even if the result overflows, it
|
|
* will be equal to {@code BigInteger.valueOf(b).pow(k).longValue()}. This
|
|
* implementation runs in {@code O(log k)} time.
|
|
*
|
|
* @throws IllegalArgumentException if {@code k < 0}
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static long pow(long b, int k) {
|
|
checkNonNegative("exponent", k);
|
|
if (-2 <= b && b <= 2) {
|
|
switch ((int) b) {
|
|
case 0:
|
|
return (k == 0) ? 1 : 0;
|
|
case 1:
|
|
return 1;
|
|
case (-1):
|
|
return ((k & 1) == 0) ? 1 : -1;
|
|
case 2:
|
|
return (k < Long.SIZE) ? 1L << k : 0;
|
|
case (-2):
|
|
if (k < Long.SIZE) {
|
|
return ((k & 1) == 0) ? 1L << k : -(1L << k);
|
|
} else {
|
|
return 0;
|
|
}
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
}
|
|
for (long accum = 1;; k >>= 1) {
|
|
switch (k) {
|
|
case 0:
|
|
return accum;
|
|
case 1:
|
|
return accum * b;
|
|
default:
|
|
accum *= ((k & 1) == 0) ? 1 : b;
|
|
b *= b;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the square root of {@code x}, rounded with the specified rounding
|
|
* mode.
|
|
*
|
|
* @throws IllegalArgumentException if {@code x < 0}
|
|
* @throws ArithmeticException if {@code mode} is
|
|
* {@link RoundingMode#UNNECESSARY} and
|
|
* {@code sqrt(x)} is not an integer
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
@SuppressWarnings("fallthrough")
|
|
public static long sqrt(long x, RoundingMode mode) {
|
|
checkNonNegative("x", x);
|
|
if (fitsInInt(x)) {
|
|
return IntMath.sqrt((int) x, mode);
|
|
}
|
|
/*
|
|
* Let k be the true value of floor(sqrt(x)), so that
|
|
*
|
|
* k * k <= x < (k + 1) * (k + 1) (double) (k * k) <= (double) x <= (double) ((k
|
|
* + 1) * (k + 1)) since casting to double is nondecreasing. Note that the
|
|
* right-hand inequality is no longer strict. Math.sqrt(k * k) <= Math.sqrt(x)
|
|
* <= Math.sqrt((k + 1) * (k + 1)) since Math.sqrt is monotonic. (long)
|
|
* Math.sqrt(k * k) <= (long) Math.sqrt(x) <= (long) Math.sqrt((k + 1) * (k +
|
|
* 1)) since casting to long is monotonic k <= (long) Math.sqrt(x) <= k + 1
|
|
* since (long) Math.sqrt(k * k) == k, as checked exhaustively in {@link
|
|
* LongMathTest#testSqrtOfPerfectSquareAsDoubleIsPerfect}
|
|
*/
|
|
long guess = (long) Math.sqrt(x);
|
|
// Note: guess is always <= FLOOR_SQRT_MAX_LONG.
|
|
long guessSquared = guess * guess;
|
|
// Note (2013-2-26): benchmarks indicate that, inscrutably enough, using if
|
|
// statements is
|
|
// faster here than using lessThanBranchFree.
|
|
switch (mode) {
|
|
case UNNECESSARY:
|
|
checkRoundingUnnecessary(guessSquared == x);
|
|
return guess;
|
|
case FLOOR:
|
|
case DOWN:
|
|
if (x < guessSquared) {
|
|
return guess - 1;
|
|
}
|
|
return guess;
|
|
case CEILING:
|
|
case UP:
|
|
if (x > guessSquared) {
|
|
return guess + 1;
|
|
}
|
|
return guess;
|
|
case HALF_DOWN:
|
|
case HALF_UP:
|
|
case HALF_EVEN:
|
|
long sqrtFloor = guess - ((x < guessSquared) ? 1 : 0);
|
|
long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor;
|
|
/*
|
|
* We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25.
|
|
* Since both x and halfSquare are integers, this is equivalent to testing
|
|
* whether or not x <= halfSquare. (We have to deal with overflow, though.)
|
|
*
|
|
* If we treat halfSquare as an unsigned long, we know that sqrtFloor^2 <= x <
|
|
* (sqrtFloor + 1)^2 halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1 so
|
|
* |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare
|
|
* as a signed long, so lessThanBranchFree is safe for use.
|
|
*/
|
|
return sqrtFloor + lessThanBranchFree(halfSquare, x);
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the result of dividing {@code p} by {@code q}, rounding using the
|
|
* specified {@code RoundingMode}.
|
|
*
|
|
* @throws ArithmeticException if {@code q == 0}, or if
|
|
* {@code mode == UNNECESSARY} and {@code a} is not
|
|
* an integer multiple of {@code b}
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
@SuppressWarnings("fallthrough")
|
|
public static long divide(long p, long q, RoundingMode mode) {
|
|
checkNotNull(mode);
|
|
long div = p / q; // throws if q == 0
|
|
long rem = p - q * div; // equals p % q
|
|
|
|
if (rem == 0) {
|
|
return div;
|
|
}
|
|
|
|
/*
|
|
* Normal Java division rounds towards 0, consistently with RoundingMode.DOWN.
|
|
* We just have to deal with the cases where rounding towards 0 is wrong, which
|
|
* typically depends on the sign of p / q.
|
|
*
|
|
* signum is 1 if p and q are both nonnegative or both negative, and -1
|
|
* otherwise.
|
|
*/
|
|
int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1));
|
|
boolean increment;
|
|
switch (mode) {
|
|
case UNNECESSARY:
|
|
checkRoundingUnnecessary(rem == 0);
|
|
// fall through
|
|
case DOWN:
|
|
increment = false;
|
|
break;
|
|
case UP:
|
|
increment = true;
|
|
break;
|
|
case CEILING:
|
|
increment = signum > 0;
|
|
break;
|
|
case FLOOR:
|
|
increment = signum < 0;
|
|
break;
|
|
case HALF_EVEN:
|
|
case HALF_DOWN:
|
|
case HALF_UP:
|
|
long absRem = abs(rem);
|
|
long cmpRemToHalfDivisor = absRem - (abs(q) - absRem);
|
|
// subtracting two nonnegative longs can't overflow
|
|
// cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2).
|
|
if (cmpRemToHalfDivisor == 0) { // exactly on the half mark
|
|
increment = (mode == HALF_UP | (mode == HALF_EVEN & (div & 1) != 0));
|
|
} else {
|
|
increment = cmpRemToHalfDivisor > 0; // closer to the UP value
|
|
}
|
|
break;
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
return increment ? div + signum : div;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code x mod m}, a non-negative value less than {@code m}. This
|
|
* differs from {@code x % m}, which might be negative.
|
|
*
|
|
* <p>
|
|
* For example:
|
|
*
|
|
* <pre>
|
|
* {@code
|
|
*
|
|
* mod(7, 4) == 3
|
|
* mod(-7, 4) == 1
|
|
* mod(-1, 4) == 3
|
|
* mod(-8, 4) == 0
|
|
* mod(8, 4) == 0}
|
|
* </pre>
|
|
*
|
|
* @throws ArithmeticException if {@code m <= 0}
|
|
* @see <a href=
|
|
* "http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3">
|
|
* Remainder Operator</a>
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static int mod(long x, int m) {
|
|
// Cast is safe because the result is guaranteed in the range [0, m)
|
|
return (int) mod(x, (long) m);
|
|
}
|
|
|
|
/**
|
|
* Returns {@code x mod m}, a non-negative value less than {@code m}. This
|
|
* differs from {@code x % m}, which might be negative.
|
|
*
|
|
* <p>
|
|
* For example:
|
|
*
|
|
* <pre>
|
|
* {@code
|
|
*
|
|
* mod(7, 4) == 3
|
|
* mod(-7, 4) == 1
|
|
* mod(-1, 4) == 3
|
|
* mod(-8, 4) == 0
|
|
* mod(8, 4) == 0}
|
|
* </pre>
|
|
*
|
|
* @throws ArithmeticException if {@code m <= 0}
|
|
* @see <a href=
|
|
* "http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3">
|
|
* Remainder Operator</a>
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static long mod(long x, long m) {
|
|
if (m <= 0) {
|
|
throw new ArithmeticException("Modulus must be positive");
|
|
}
|
|
long result = x % m;
|
|
return (result >= 0) ? result : result + m;
|
|
}
|
|
|
|
/**
|
|
* Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if
|
|
* {@code a == 0 && b == 0}.
|
|
*
|
|
* @throws IllegalArgumentException if {@code a < 0} or {@code b < 0}
|
|
*/
|
|
public static long gcd(long a, long b) {
|
|
/*
|
|
* The reason we require both arguments to be >= 0 is because otherwise, what do
|
|
* you return on gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive
|
|
* 2^63, but positive 2^63 isn't an int.
|
|
*/
|
|
checkNonNegative("a", a);
|
|
checkNonNegative("b", b);
|
|
if (a == 0) {
|
|
// 0 % b == 0, so b divides a, but the converse doesn't hold.
|
|
// BigInteger.gcd is consistent with this decision.
|
|
return b;
|
|
} else if (b == 0) {
|
|
return a; // similar logic
|
|
}
|
|
/*
|
|
* Uses the binary GCD algorithm; see
|
|
* http://en.wikipedia.org/wiki/Binary_GCD_algorithm. This is >60% faster than
|
|
* the Euclidean algorithm in benchmarks.
|
|
*/
|
|
int aTwos = Long.numberOfTrailingZeros(a);
|
|
a >>= aTwos; // divide out all 2s
|
|
int bTwos = Long.numberOfTrailingZeros(b);
|
|
b >>= bTwos; // divide out all 2s
|
|
while (a != b) { // both a, b are odd
|
|
// The key to the binary GCD algorithm is as follows:
|
|
// Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
|
|
// But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers
|
|
// of two.
|
|
|
|
// We bend over backwards to avoid branching, adapting a technique from
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
|
|
|
|
long delta = a - b; // can't overflow, since a and b are nonnegative
|
|
|
|
long minDeltaOrZero = delta & (delta >> (Long.SIZE - 1));
|
|
// equivalent to Math.min(delta, 0)
|
|
|
|
a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b)
|
|
// a is now nonnegative and even
|
|
|
|
b += minDeltaOrZero; // sets b to min(old a, b)
|
|
a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b
|
|
}
|
|
return a << min(aTwos, bTwos);
|
|
}
|
|
|
|
/**
|
|
* Returns the sum of {@code a} and {@code b}, provided it does not overflow.
|
|
*
|
|
* @throws ArithmeticException if {@code a + b} overflows in signed {@code long}
|
|
* arithmetic
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static long checkedAdd(long a, long b) {
|
|
long result = a + b;
|
|
checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the difference of {@code a} and {@code b}, provided it does not
|
|
* overflow.
|
|
*
|
|
* @throws ArithmeticException if {@code a - b} overflows in signed {@code long}
|
|
* arithmetic
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static long checkedSubtract(long a, long b) {
|
|
long result = a - b;
|
|
checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the product of {@code a} and {@code b}, provided it does not
|
|
* overflow.
|
|
*
|
|
* @throws ArithmeticException if {@code a * b} overflows in signed {@code long}
|
|
* arithmetic
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static long checkedMultiply(long a, long b) {
|
|
// Hacker's Delight, Section 2-12
|
|
int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b)
|
|
+ Long.numberOfLeadingZeros(~b);
|
|
/*
|
|
* If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE
|
|
* it's definitely bad. We do the leadingZeros check to avoid the division below
|
|
* if at all possible.
|
|
*
|
|
* Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0
|
|
* and 1. We take care of all a < 0 with their own check, because in particular,
|
|
* the case a == -1 will incorrectly pass the division check below.
|
|
*
|
|
* In all other cases, we check that either a is 0 or the result is consistent
|
|
* with division.
|
|
*/
|
|
if (leadingZeros > Long.SIZE + 1) {
|
|
return a * b;
|
|
}
|
|
checkNoOverflow(leadingZeros >= Long.SIZE);
|
|
checkNoOverflow(a >= 0 | b != Long.MIN_VALUE);
|
|
long result = a * b;
|
|
checkNoOverflow(a == 0 || result / a == b);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the {@code b} to the {@code k}th power, provided it does not
|
|
* overflow.
|
|
*
|
|
* @throws ArithmeticException if {@code b} to the {@code k}th power overflows
|
|
* in signed {@code long} arithmetic
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static long checkedPow(long b, int k) {
|
|
checkNonNegative("exponent", k);
|
|
if (b >= -2 & b <= 2) {
|
|
switch ((int) b) {
|
|
case 0:
|
|
return (k == 0) ? 1 : 0;
|
|
case 1:
|
|
return 1;
|
|
case (-1):
|
|
return ((k & 1) == 0) ? 1 : -1;
|
|
case 2:
|
|
checkNoOverflow(k < Long.SIZE - 1);
|
|
return 1L << k;
|
|
case (-2):
|
|
checkNoOverflow(k < Long.SIZE);
|
|
return ((k & 1) == 0) ? (1L << k) : (-1L << k);
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
}
|
|
long accum = 1;
|
|
while (true) {
|
|
switch (k) {
|
|
case 0:
|
|
return accum;
|
|
case 1:
|
|
return checkedMultiply(accum, b);
|
|
default:
|
|
if ((k & 1) != 0) {
|
|
accum = checkedMultiply(accum, b);
|
|
}
|
|
k >>= 1;
|
|
if (k > 0) {
|
|
checkNoOverflow(b <= FLOOR_SQRT_MAX_LONG);
|
|
b *= b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
@VisibleForTesting
|
|
static final long FLOOR_SQRT_MAX_LONG = 3037000499L;
|
|
|
|
/**
|
|
* Returns {@code n!}, that is, the product of the first {@code n} positive
|
|
* integers, {@code 1} if {@code n == 0}, or {@link Long#MAX_VALUE} if the
|
|
* result does not fit in a {@code long}.
|
|
*
|
|
* @throws IllegalArgumentException if {@code n < 0}
|
|
*/
|
|
@GwtIncompatible("TODO")
|
|
public static long factorial(int n) {
|
|
checkNonNegative("n", n);
|
|
return (n < factorials.length) ? factorials[n] : Long.MAX_VALUE;
|
|
}
|
|
|
|
static final long[] factorials = { 1L, 1L, 1L * 2, 1L * 2 * 3, 1L * 2 * 3 * 4, 1L * 2 * 3 * 4 * 5,
|
|
1L * 2 * 3 * 4 * 5 * 6, 1L * 2 * 3 * 4 * 5 * 6 * 7, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19,
|
|
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 };
|
|
|
|
/**
|
|
* Returns {@code n} choose {@code k}, also known as the binomial coefficient of
|
|
* {@code n} and {@code k}, or {@link Long#MAX_VALUE} if the result does not fit
|
|
* in a {@code long}.
|
|
*
|
|
* @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or
|
|
* {@code k > n}
|
|
*/
|
|
public static long binomial(int n, int k) {
|
|
checkNonNegative("n", n);
|
|
checkNonNegative("k", k);
|
|
checkArgument(k <= n, "k (%s) > n (%s)", k, n);
|
|
if (k > (n >> 1)) {
|
|
k = n - k;
|
|
}
|
|
switch (k) {
|
|
case 0:
|
|
return 1;
|
|
case 1:
|
|
return n;
|
|
default:
|
|
if (n < factorials.length) {
|
|
return factorials[n] / (factorials[k] * factorials[n - k]);
|
|
} else if (k >= biggestBinomials.length || n > biggestBinomials[k]) {
|
|
return Long.MAX_VALUE;
|
|
} else if (k < biggestSimpleBinomials.length && n <= biggestSimpleBinomials[k]) {
|
|
// guaranteed not to overflow
|
|
long result = n--;
|
|
for (int i = 2; i <= k; n--, i++) {
|
|
result *= n;
|
|
result /= i;
|
|
}
|
|
return result;
|
|
} else {
|
|
int nBits = LongMath.log2(n, RoundingMode.CEILING);
|
|
|
|
long result = 1;
|
|
long numerator = n--;
|
|
long denominator = 1;
|
|
|
|
int numeratorBits = nBits;
|
|
// This is an upper bound on log2(numerator, ceiling).
|
|
|
|
/*
|
|
* We want to do this in long math for speed, but want to avoid overflow. We
|
|
* adapt the technique previously used by BigIntegerMath: maintain separate
|
|
* numerator and denominator accumulators, multiplying the fraction into result
|
|
* when near overflow.
|
|
*/
|
|
for (int i = 2; i <= k; i++, n--) {
|
|
if (numeratorBits + nBits < Long.SIZE - 1) {
|
|
// It's definitely safe to multiply into numerator and denominator.
|
|
numerator *= n;
|
|
denominator *= i;
|
|
numeratorBits += nBits;
|
|
} else {
|
|
// It might not be safe to multiply into numerator and denominator,
|
|
// so multiply (numerator / denominator) into result.
|
|
result = multiplyFraction(result, numerator, denominator);
|
|
numerator = n;
|
|
denominator = i;
|
|
numeratorBits = nBits;
|
|
}
|
|
}
|
|
return multiplyFraction(result, numerator, denominator);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns (x * numerator / denominator), which is assumed to come out to an
|
|
* integral value.
|
|
*/
|
|
static long multiplyFraction(long x, long numerator, long denominator) {
|
|
if (x == 1) {
|
|
return numerator / denominator;
|
|
}
|
|
long commonDivisor = gcd(x, denominator);
|
|
x /= commonDivisor;
|
|
denominator /= commonDivisor;
|
|
// We know gcd(x, denominator) = 1, and x * numerator / denominator is exact,
|
|
// so denominator must be a divisor of numerator.
|
|
return x * (numerator / denominator);
|
|
}
|
|
|
|
/*
|
|
* binomial(biggestBinomials[k], k) fits in a long, but not
|
|
* binomial(biggestBinomials[k] + 1, k).
|
|
*/
|
|
static final int[] biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977,
|
|
16175, 4337, 1733, 887, 534, 361, 265, 206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68,
|
|
67, 67, 66, 66, 66, 66 };
|
|
|
|
/*
|
|
* binomial(biggestSimpleBinomials[k], k) doesn't need to use the slower
|
|
* GCD-based impl, but binomial(biggestSimpleBinomials[k] + 1, k) does.
|
|
*/
|
|
@VisibleForTesting
|
|
static final int[] biggestSimpleBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 2642246,
|
|
86251, 11724, 3218, 1313, 684, 419, 287, 214, 169, 139, 119, 105, 95, 87, 81, 76, 73, 70, 68, 66, 64, 63,
|
|
62, 62, 61, 61, 61 };
|
|
// These values were generated by using checkedMultiply to see when the simple
|
|
// multiply/divide
|
|
// algorithm would lead to an overflow.
|
|
|
|
static boolean fitsInInt(long x) {
|
|
return (int) x == x;
|
|
}
|
|
|
|
/**
|
|
* Returns the arithmetic mean of {@code x} and {@code y}, rounded toward
|
|
* negative infinity. This method is resilient to overflow.
|
|
*
|
|
* @since 14.0
|
|
*/
|
|
public static long mean(long x, long y) {
|
|
// Efficient method for computing the arithmetic mean.
|
|
// The alternative (x + y) / 2 fails for large values.
|
|
// The alternative (x + y) >>> 1 fails for negative values.
|
|
return (x & y) + ((x ^ y) >> 1);
|
|
}
|
|
|
|
private LongMath() {
|
|
}
|
|
}
|