EaglerForge/sources/main/java/com/google/common/collect/TreeRangeSet.java

831 lines
27 KiB
Java

/*
* Copyright (C) 2011 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map.Entry;
import java.util.NavigableMap;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.TreeMap;
import javax.annotation.Nullable;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Objects;
/**
* An implementation of {@link RangeSet} backed by a {@link TreeMap}.
*
* @author Louis Wasserman
* @since 14.0
*/
@Beta
@GwtIncompatible("uses NavigableMap")
public class TreeRangeSet<C extends Comparable<?>> extends AbstractRangeSet<C> {
@VisibleForTesting
final NavigableMap<Cut<C>, Range<C>> rangesByLowerBound;
/**
* Creates an empty {@code TreeRangeSet} instance.
*/
public static <C extends Comparable<?>> TreeRangeSet<C> create() {
return new TreeRangeSet<C>(new TreeMap<Cut<C>, Range<C>>());
}
/**
* Returns a {@code TreeRangeSet} initialized with the ranges in the specified
* range set.
*/
public static <C extends Comparable<?>> TreeRangeSet<C> create(RangeSet<C> rangeSet) {
TreeRangeSet<C> result = create();
result.addAll(rangeSet);
return result;
}
private TreeRangeSet(NavigableMap<Cut<C>, Range<C>> rangesByLowerCut) {
this.rangesByLowerBound = rangesByLowerCut;
}
private transient Set<Range<C>> asRanges;
@Override
public Set<Range<C>> asRanges() {
Set<Range<C>> result = asRanges;
return (result == null) ? asRanges = new AsRanges() : result;
}
final class AsRanges extends ForwardingCollection<Range<C>> implements Set<Range<C>> {
@Override
protected Collection<Range<C>> delegate() {
return rangesByLowerBound.values();
}
@Override
public int hashCode() {
return Sets.hashCodeImpl(this);
}
@Override
public boolean equals(@Nullable Object o) {
return Sets.equalsImpl(this, o);
}
}
@Override
@Nullable
public Range<C> rangeContaining(C value) {
checkNotNull(value);
Entry<Cut<C>, Range<C>> floorEntry = rangesByLowerBound.floorEntry(Cut.belowValue(value));
if (floorEntry != null && floorEntry.getValue().contains(value)) {
return floorEntry.getValue();
} else {
// TODO(kevinb): revisit this design choice
return null;
}
}
@Override
public boolean encloses(Range<C> range) {
checkNotNull(range);
Entry<Cut<C>, Range<C>> floorEntry = rangesByLowerBound.floorEntry(range.lowerBound);
return floorEntry != null && floorEntry.getValue().encloses(range);
}
@Nullable
private Range<C> rangeEnclosing(Range<C> range) {
checkNotNull(range);
Entry<Cut<C>, Range<C>> floorEntry = rangesByLowerBound.floorEntry(range.lowerBound);
return (floorEntry != null && floorEntry.getValue().encloses(range)) ? floorEntry.getValue() : null;
}
@Override
public Range<C> span() {
Entry<Cut<C>, Range<C>> firstEntry = rangesByLowerBound.firstEntry();
Entry<Cut<C>, Range<C>> lastEntry = rangesByLowerBound.lastEntry();
if (firstEntry == null) {
throw new NoSuchElementException();
}
return Range.create(firstEntry.getValue().lowerBound, lastEntry.getValue().upperBound);
}
@Override
public void add(Range<C> rangeToAdd) {
checkNotNull(rangeToAdd);
if (rangeToAdd.isEmpty()) {
return;
}
// We will use { } to illustrate ranges currently in the range set, and < >
// to illustrate rangeToAdd.
Cut<C> lbToAdd = rangeToAdd.lowerBound;
Cut<C> ubToAdd = rangeToAdd.upperBound;
Entry<Cut<C>, Range<C>> entryBelowLB = rangesByLowerBound.lowerEntry(lbToAdd);
if (entryBelowLB != null) {
// { <
Range<C> rangeBelowLB = entryBelowLB.getValue();
if (rangeBelowLB.upperBound.compareTo(lbToAdd) >= 0) {
// { < }, and we will need to coalesce
if (rangeBelowLB.upperBound.compareTo(ubToAdd) >= 0) {
// { < > }
ubToAdd = rangeBelowLB.upperBound;
/*
* TODO(cpovirk): can we just "return;" here? Or, can we remove this if()
* entirely? If not, add tests to demonstrate the problem with each approach
*/
}
lbToAdd = rangeBelowLB.lowerBound;
}
}
Entry<Cut<C>, Range<C>> entryBelowUB = rangesByLowerBound.floorEntry(ubToAdd);
if (entryBelowUB != null) {
// { >
Range<C> rangeBelowUB = entryBelowUB.getValue();
if (rangeBelowUB.upperBound.compareTo(ubToAdd) >= 0) {
// { > }, and we need to coalesce
ubToAdd = rangeBelowUB.upperBound;
}
}
// Remove ranges which are strictly enclosed.
rangesByLowerBound.subMap(lbToAdd, ubToAdd).clear();
replaceRangeWithSameLowerBound(Range.create(lbToAdd, ubToAdd));
}
@Override
public void remove(Range<C> rangeToRemove) {
checkNotNull(rangeToRemove);
if (rangeToRemove.isEmpty()) {
return;
}
// We will use { } to illustrate ranges currently in the range set, and < >
// to illustrate rangeToRemove.
Entry<Cut<C>, Range<C>> entryBelowLB = rangesByLowerBound.lowerEntry(rangeToRemove.lowerBound);
if (entryBelowLB != null) {
// { <
Range<C> rangeBelowLB = entryBelowLB.getValue();
if (rangeBelowLB.upperBound.compareTo(rangeToRemove.lowerBound) >= 0) {
// { < }, and we will need to subdivide
if (rangeToRemove.hasUpperBound() && rangeBelowLB.upperBound.compareTo(rangeToRemove.upperBound) >= 0) {
// { < > }
replaceRangeWithSameLowerBound(Range.create(rangeToRemove.upperBound, rangeBelowLB.upperBound));
}
replaceRangeWithSameLowerBound(Range.create(rangeBelowLB.lowerBound, rangeToRemove.lowerBound));
}
}
Entry<Cut<C>, Range<C>> entryBelowUB = rangesByLowerBound.floorEntry(rangeToRemove.upperBound);
if (entryBelowUB != null) {
// { >
Range<C> rangeBelowUB = entryBelowUB.getValue();
if (rangeToRemove.hasUpperBound() && rangeBelowUB.upperBound.compareTo(rangeToRemove.upperBound) >= 0) {
// { > }
replaceRangeWithSameLowerBound(Range.create(rangeToRemove.upperBound, rangeBelowUB.upperBound));
}
}
rangesByLowerBound.subMap(rangeToRemove.lowerBound, rangeToRemove.upperBound).clear();
}
private void replaceRangeWithSameLowerBound(Range<C> range) {
if (range.isEmpty()) {
rangesByLowerBound.remove(range.lowerBound);
} else {
rangesByLowerBound.put(range.lowerBound, range);
}
}
private transient RangeSet<C> complement;
@Override
public RangeSet<C> complement() {
RangeSet<C> result = complement;
return (result == null) ? complement = new Complement() : result;
}
@VisibleForTesting
static final class RangesByUpperBound<C extends Comparable<?>> extends AbstractNavigableMap<Cut<C>, Range<C>> {
private final NavigableMap<Cut<C>, Range<C>> rangesByLowerBound;
/**
* upperBoundWindow represents the headMap/subMap/tailMap view of the entire
* "ranges by upper bound" map; it's a constraint on the *keys*, and does not
* affect the values.
*/
private final Range<Cut<C>> upperBoundWindow;
RangesByUpperBound(NavigableMap<Cut<C>, Range<C>> rangesByLowerBound) {
this.rangesByLowerBound = rangesByLowerBound;
this.upperBoundWindow = Range.all();
}
private RangesByUpperBound(NavigableMap<Cut<C>, Range<C>> rangesByLowerBound, Range<Cut<C>> upperBoundWindow) {
this.rangesByLowerBound = rangesByLowerBound;
this.upperBoundWindow = upperBoundWindow;
}
private NavigableMap<Cut<C>, Range<C>> subMap(Range<Cut<C>> window) {
if (window.isConnected(upperBoundWindow)) {
return new RangesByUpperBound<C>(rangesByLowerBound, window.intersection(upperBoundWindow));
} else {
return ImmutableSortedMap.of();
}
}
@Override
public NavigableMap<Cut<C>, Range<C>> subMap(Cut<C> fromKey, boolean fromInclusive, Cut<C> toKey,
boolean toInclusive) {
return subMap(Range.range(fromKey, BoundType.forBoolean(fromInclusive), toKey,
BoundType.forBoolean(toInclusive)));
}
@Override
public NavigableMap<Cut<C>, Range<C>> headMap(Cut<C> toKey, boolean inclusive) {
return subMap(Range.upTo(toKey, BoundType.forBoolean(inclusive)));
}
@Override
public NavigableMap<Cut<C>, Range<C>> tailMap(Cut<C> fromKey, boolean inclusive) {
return subMap(Range.downTo(fromKey, BoundType.forBoolean(inclusive)));
}
@Override
public Comparator<? super Cut<C>> comparator() {
return Ordering.<Cut<C>>natural();
}
@Override
public boolean containsKey(@Nullable Object key) {
return get(key) != null;
}
@Override
public Range<C> get(@Nullable Object key) {
if (key instanceof Cut) {
try {
@SuppressWarnings("unchecked") // we catch CCEs
Cut<C> cut = (Cut<C>) key;
if (!upperBoundWindow.contains(cut)) {
return null;
}
Entry<Cut<C>, Range<C>> candidate = rangesByLowerBound.lowerEntry(cut);
if (candidate != null && candidate.getValue().upperBound.equals(cut)) {
return candidate.getValue();
}
} catch (ClassCastException e) {
return null;
}
}
return null;
}
@Override
Iterator<Entry<Cut<C>, Range<C>>> entryIterator() {
/*
* We want to start the iteration at the first range where the upper bound is in
* upperBoundWindow.
*/
final Iterator<Range<C>> backingItr;
if (!upperBoundWindow.hasLowerBound()) {
backingItr = rangesByLowerBound.values().iterator();
} else {
Entry<Cut<C>, Range<C>> lowerEntry = rangesByLowerBound.lowerEntry(upperBoundWindow.lowerEndpoint());
if (lowerEntry == null) {
backingItr = rangesByLowerBound.values().iterator();
} else if (upperBoundWindow.lowerBound.isLessThan(lowerEntry.getValue().upperBound)) {
backingItr = rangesByLowerBound.tailMap(lowerEntry.getKey(), true).values().iterator();
} else {
backingItr = rangesByLowerBound.tailMap(upperBoundWindow.lowerEndpoint(), true).values().iterator();
}
}
return new AbstractIterator<Entry<Cut<C>, Range<C>>>() {
@Override
protected Entry<Cut<C>, Range<C>> computeNext() {
if (!backingItr.hasNext()) {
return endOfData();
}
Range<C> range = backingItr.next();
if (upperBoundWindow.upperBound.isLessThan(range.upperBound)) {
return endOfData();
} else {
return Maps.immutableEntry(range.upperBound, range);
}
}
};
}
@Override
Iterator<Entry<Cut<C>, Range<C>>> descendingEntryIterator() {
Collection<Range<C>> candidates;
if (upperBoundWindow.hasUpperBound()) {
candidates = rangesByLowerBound.headMap(upperBoundWindow.upperEndpoint(), false).descendingMap()
.values();
} else {
candidates = rangesByLowerBound.descendingMap().values();
}
final PeekingIterator<Range<C>> backingItr = Iterators.peekingIterator(candidates.iterator());
if (backingItr.hasNext() && upperBoundWindow.upperBound.isLessThan(backingItr.peek().upperBound)) {
backingItr.next();
}
return new AbstractIterator<Entry<Cut<C>, Range<C>>>() {
@Override
protected Entry<Cut<C>, Range<C>> computeNext() {
if (!backingItr.hasNext()) {
return endOfData();
}
Range<C> range = backingItr.next();
return upperBoundWindow.lowerBound.isLessThan(range.upperBound)
? Maps.immutableEntry(range.upperBound, range)
: endOfData();
}
};
}
@Override
public int size() {
if (upperBoundWindow.equals(Range.all())) {
return rangesByLowerBound.size();
}
return Iterators.size(entryIterator());
}
@Override
public boolean isEmpty() {
return upperBoundWindow.equals(Range.all()) ? rangesByLowerBound.isEmpty() : !entryIterator().hasNext();
}
}
private static final class ComplementRangesByLowerBound<C extends Comparable<?>>
extends AbstractNavigableMap<Cut<C>, Range<C>> {
private final NavigableMap<Cut<C>, Range<C>> positiveRangesByLowerBound;
private final NavigableMap<Cut<C>, Range<C>> positiveRangesByUpperBound;
/**
* complementLowerBoundWindow represents the headMap/subMap/tailMap view of the
* entire "complement ranges by lower bound" map; it's a constraint on the
* *keys*, and does not affect the values.
*/
private final Range<Cut<C>> complementLowerBoundWindow;
ComplementRangesByLowerBound(NavigableMap<Cut<C>, Range<C>> positiveRangesByLowerBound) {
this(positiveRangesByLowerBound, Range.<Cut<C>>all());
}
private ComplementRangesByLowerBound(NavigableMap<Cut<C>, Range<C>> positiveRangesByLowerBound,
Range<Cut<C>> window) {
this.positiveRangesByLowerBound = positiveRangesByLowerBound;
this.positiveRangesByUpperBound = new RangesByUpperBound<C>(positiveRangesByLowerBound);
this.complementLowerBoundWindow = window;
}
private NavigableMap<Cut<C>, Range<C>> subMap(Range<Cut<C>> subWindow) {
if (!complementLowerBoundWindow.isConnected(subWindow)) {
return ImmutableSortedMap.of();
} else {
subWindow = subWindow.intersection(complementLowerBoundWindow);
return new ComplementRangesByLowerBound<C>(positiveRangesByLowerBound, subWindow);
}
}
@Override
public NavigableMap<Cut<C>, Range<C>> subMap(Cut<C> fromKey, boolean fromInclusive, Cut<C> toKey,
boolean toInclusive) {
return subMap(Range.range(fromKey, BoundType.forBoolean(fromInclusive), toKey,
BoundType.forBoolean(toInclusive)));
}
@Override
public NavigableMap<Cut<C>, Range<C>> headMap(Cut<C> toKey, boolean inclusive) {
return subMap(Range.upTo(toKey, BoundType.forBoolean(inclusive)));
}
@Override
public NavigableMap<Cut<C>, Range<C>> tailMap(Cut<C> fromKey, boolean inclusive) {
return subMap(Range.downTo(fromKey, BoundType.forBoolean(inclusive)));
}
@Override
public Comparator<? super Cut<C>> comparator() {
return Ordering.<Cut<C>>natural();
}
@Override
Iterator<Entry<Cut<C>, Range<C>>> entryIterator() {
/*
* firstComplementRangeLowerBound is the first complement range lower bound
* inside complementLowerBoundWindow. Complement range lower bounds are either
* positive range upper bounds, or Cut.belowAll().
*
* positiveItr starts at the first positive range with lower bound greater than
* firstComplementRangeLowerBound. (Positive range lower bounds correspond to
* complement range upper bounds.)
*/
Collection<Range<C>> positiveRanges;
if (complementLowerBoundWindow.hasLowerBound()) {
positiveRanges = positiveRangesByUpperBound.tailMap(complementLowerBoundWindow.lowerEndpoint(),
complementLowerBoundWindow.lowerBoundType() == BoundType.CLOSED).values();
} else {
positiveRanges = positiveRangesByUpperBound.values();
}
final PeekingIterator<Range<C>> positiveItr = Iterators.peekingIterator(positiveRanges.iterator());
final Cut<C> firstComplementRangeLowerBound;
if (complementLowerBoundWindow.contains(Cut.<C>belowAll())
&& (!positiveItr.hasNext() || positiveItr.peek().lowerBound != Cut.<C>belowAll())) {
firstComplementRangeLowerBound = Cut.belowAll();
} else if (positiveItr.hasNext()) {
firstComplementRangeLowerBound = positiveItr.next().upperBound;
} else {
return Iterators.emptyIterator();
}
return new AbstractIterator<Entry<Cut<C>, Range<C>>>() {
Cut<C> nextComplementRangeLowerBound = firstComplementRangeLowerBound;
@Override
protected Entry<Cut<C>, Range<C>> computeNext() {
if (complementLowerBoundWindow.upperBound.isLessThan(nextComplementRangeLowerBound)
|| nextComplementRangeLowerBound == Cut.<C>aboveAll()) {
return endOfData();
}
Range<C> negativeRange;
if (positiveItr.hasNext()) {
Range<C> positiveRange = positiveItr.next();
negativeRange = Range.create(nextComplementRangeLowerBound, positiveRange.lowerBound);
nextComplementRangeLowerBound = positiveRange.upperBound;
} else {
negativeRange = Range.create(nextComplementRangeLowerBound, Cut.<C>aboveAll());
nextComplementRangeLowerBound = Cut.aboveAll();
}
return Maps.immutableEntry(negativeRange.lowerBound, negativeRange);
}
};
}
@Override
Iterator<Entry<Cut<C>, Range<C>>> descendingEntryIterator() {
Iterator<Range<C>> itr;
/*
* firstComplementRangeUpperBound is the upper bound of the last complement
* range with lower bound inside complementLowerBoundWindow.
*
* positiveItr starts at the first positive range with upper bound less than
* firstComplementRangeUpperBound. (Positive range upper bounds correspond to
* complement range lower bounds.)
*/
Cut<C> startingPoint = complementLowerBoundWindow.hasUpperBound()
? complementLowerBoundWindow.upperEndpoint()
: Cut.<C>aboveAll();
boolean inclusive = complementLowerBoundWindow.hasUpperBound()
&& complementLowerBoundWindow.upperBoundType() == BoundType.CLOSED;
final PeekingIterator<Range<C>> positiveItr = Iterators.peekingIterator(
positiveRangesByUpperBound.headMap(startingPoint, inclusive).descendingMap().values().iterator());
Cut<C> cut;
if (positiveItr.hasNext()) {
cut = (positiveItr.peek().upperBound == Cut.<C>aboveAll()) ? positiveItr.next().lowerBound
: positiveRangesByLowerBound.higherKey(positiveItr.peek().upperBound);
} else if (!complementLowerBoundWindow.contains(Cut.<C>belowAll())
|| positiveRangesByLowerBound.containsKey(Cut.belowAll())) {
return Iterators.emptyIterator();
} else {
cut = positiveRangesByLowerBound.higherKey(Cut.<C>belowAll());
}
final Cut<C> firstComplementRangeUpperBound = Objects.firstNonNull(cut, Cut.<C>aboveAll());
return new AbstractIterator<Entry<Cut<C>, Range<C>>>() {
Cut<C> nextComplementRangeUpperBound = firstComplementRangeUpperBound;
@Override
protected Entry<Cut<C>, Range<C>> computeNext() {
if (nextComplementRangeUpperBound == Cut.<C>belowAll()) {
return endOfData();
} else if (positiveItr.hasNext()) {
Range<C> positiveRange = positiveItr.next();
Range<C> negativeRange = Range.create(positiveRange.upperBound, nextComplementRangeUpperBound);
nextComplementRangeUpperBound = positiveRange.lowerBound;
if (complementLowerBoundWindow.lowerBound.isLessThan(negativeRange.lowerBound)) {
return Maps.immutableEntry(negativeRange.lowerBound, negativeRange);
}
} else if (complementLowerBoundWindow.lowerBound.isLessThan(Cut.<C>belowAll())) {
Range<C> negativeRange = Range.create(Cut.<C>belowAll(), nextComplementRangeUpperBound);
nextComplementRangeUpperBound = Cut.belowAll();
return Maps.immutableEntry(Cut.<C>belowAll(), negativeRange);
}
return endOfData();
}
};
}
@Override
public int size() {
return Iterators.size(entryIterator());
}
@Override
@Nullable
public Range<C> get(Object key) {
if (key instanceof Cut) {
try {
@SuppressWarnings("unchecked")
Cut<C> cut = (Cut<C>) key;
// tailMap respects the current window
Entry<Cut<C>, Range<C>> firstEntry = tailMap(cut, true).firstEntry();
if (firstEntry != null && firstEntry.getKey().equals(cut)) {
return firstEntry.getValue();
}
} catch (ClassCastException e) {
return null;
}
}
return null;
}
@Override
public boolean containsKey(Object key) {
return get(key) != null;
}
}
private final class Complement extends TreeRangeSet<C> {
Complement() {
super(new ComplementRangesByLowerBound<C>(TreeRangeSet.this.rangesByLowerBound));
}
@Override
public void add(Range<C> rangeToAdd) {
TreeRangeSet.this.remove(rangeToAdd);
}
@Override
public void remove(Range<C> rangeToRemove) {
TreeRangeSet.this.add(rangeToRemove);
}
@Override
public boolean contains(C value) {
return !TreeRangeSet.this.contains(value);
}
@Override
public RangeSet<C> complement() {
return TreeRangeSet.this;
}
}
private static final class SubRangeSetRangesByLowerBound<C extends Comparable<?>>
extends AbstractNavigableMap<Cut<C>, Range<C>> {
/**
* lowerBoundWindow is the headMap/subMap/tailMap view; it only restricts the
* keys, and does not affect the values.
*/
private final Range<Cut<C>> lowerBoundWindow;
/**
* restriction is the subRangeSet view; ranges are truncated to their
* intersection with restriction.
*/
private final Range<C> restriction;
private final NavigableMap<Cut<C>, Range<C>> rangesByLowerBound;
private final NavigableMap<Cut<C>, Range<C>> rangesByUpperBound;
private SubRangeSetRangesByLowerBound(Range<Cut<C>> lowerBoundWindow, Range<C> restriction,
NavigableMap<Cut<C>, Range<C>> rangesByLowerBound) {
this.lowerBoundWindow = checkNotNull(lowerBoundWindow);
this.restriction = checkNotNull(restriction);
this.rangesByLowerBound = checkNotNull(rangesByLowerBound);
this.rangesByUpperBound = new RangesByUpperBound<C>(rangesByLowerBound);
}
private NavigableMap<Cut<C>, Range<C>> subMap(Range<Cut<C>> window) {
if (!window.isConnected(lowerBoundWindow)) {
return ImmutableSortedMap.of();
} else {
return new SubRangeSetRangesByLowerBound<C>(lowerBoundWindow.intersection(window), restriction,
rangesByLowerBound);
}
}
@Override
public NavigableMap<Cut<C>, Range<C>> subMap(Cut<C> fromKey, boolean fromInclusive, Cut<C> toKey,
boolean toInclusive) {
return subMap(Range.range(fromKey, BoundType.forBoolean(fromInclusive), toKey,
BoundType.forBoolean(toInclusive)));
}
@Override
public NavigableMap<Cut<C>, Range<C>> headMap(Cut<C> toKey, boolean inclusive) {
return subMap(Range.upTo(toKey, BoundType.forBoolean(inclusive)));
}
@Override
public NavigableMap<Cut<C>, Range<C>> tailMap(Cut<C> fromKey, boolean inclusive) {
return subMap(Range.downTo(fromKey, BoundType.forBoolean(inclusive)));
}
@Override
public Comparator<? super Cut<C>> comparator() {
return Ordering.<Cut<C>>natural();
}
@Override
public boolean containsKey(@Nullable Object key) {
return get(key) != null;
}
@Override
@Nullable
public Range<C> get(@Nullable Object key) {
if (key instanceof Cut) {
try {
@SuppressWarnings("unchecked") // we catch CCE's
Cut<C> cut = (Cut<C>) key;
if (!lowerBoundWindow.contains(cut) || cut.compareTo(restriction.lowerBound) < 0
|| cut.compareTo(restriction.upperBound) >= 0) {
return null;
} else if (cut.equals(restriction.lowerBound)) {
// it might be present, truncated on the left
Range<C> candidate = Maps.valueOrNull(rangesByLowerBound.floorEntry(cut));
if (candidate != null && candidate.upperBound.compareTo(restriction.lowerBound) > 0) {
return candidate.intersection(restriction);
}
} else {
Range<C> result = rangesByLowerBound.get(cut);
if (result != null) {
return result.intersection(restriction);
}
}
} catch (ClassCastException e) {
return null;
}
}
return null;
}
@Override
Iterator<Entry<Cut<C>, Range<C>>> entryIterator() {
if (restriction.isEmpty()) {
return Iterators.emptyIterator();
}
final Iterator<Range<C>> completeRangeItr;
if (lowerBoundWindow.upperBound.isLessThan(restriction.lowerBound)) {
return Iterators.emptyIterator();
} else if (lowerBoundWindow.lowerBound.isLessThan(restriction.lowerBound)) {
// starts at the first range with upper bound strictly greater than
// restriction.lowerBound
completeRangeItr = rangesByUpperBound.tailMap(restriction.lowerBound, false).values().iterator();
} else {
// starts at the first range with lower bound above lowerBoundWindow.lowerBound
completeRangeItr = rangesByLowerBound.tailMap(lowerBoundWindow.lowerBound.endpoint(),
lowerBoundWindow.lowerBoundType() == BoundType.CLOSED).values().iterator();
}
final Cut<Cut<C>> upperBoundOnLowerBounds = Ordering.natural().min(lowerBoundWindow.upperBound,
Cut.belowValue(restriction.upperBound));
return new AbstractIterator<Entry<Cut<C>, Range<C>>>() {
@Override
protected Entry<Cut<C>, Range<C>> computeNext() {
if (!completeRangeItr.hasNext()) {
return endOfData();
}
Range<C> nextRange = completeRangeItr.next();
if (upperBoundOnLowerBounds.isLessThan(nextRange.lowerBound)) {
return endOfData();
} else {
nextRange = nextRange.intersection(restriction);
return Maps.immutableEntry(nextRange.lowerBound, nextRange);
}
}
};
}
@Override
Iterator<Entry<Cut<C>, Range<C>>> descendingEntryIterator() {
if (restriction.isEmpty()) {
return Iterators.emptyIterator();
}
Cut<Cut<C>> upperBoundOnLowerBounds = Ordering.natural().min(lowerBoundWindow.upperBound,
Cut.belowValue(restriction.upperBound));
final Iterator<Range<C>> completeRangeItr = rangesByLowerBound
.headMap(upperBoundOnLowerBounds.endpoint(),
upperBoundOnLowerBounds.typeAsUpperBound() == BoundType.CLOSED)
.descendingMap().values().iterator();
return new AbstractIterator<Entry<Cut<C>, Range<C>>>() {
@Override
protected Entry<Cut<C>, Range<C>> computeNext() {
if (!completeRangeItr.hasNext()) {
return endOfData();
}
Range<C> nextRange = completeRangeItr.next();
if (restriction.lowerBound.compareTo(nextRange.upperBound) >= 0) {
return endOfData();
}
nextRange = nextRange.intersection(restriction);
if (lowerBoundWindow.contains(nextRange.lowerBound)) {
return Maps.immutableEntry(nextRange.lowerBound, nextRange);
} else {
return endOfData();
}
}
};
}
@Override
public int size() {
return Iterators.size(entryIterator());
}
}
@Override
public RangeSet<C> subRangeSet(Range<C> view) {
return view.equals(Range.<C>all()) ? this : new SubRangeSet(view);
}
private final class SubRangeSet extends TreeRangeSet<C> {
private final Range<C> restriction;
SubRangeSet(Range<C> restriction) {
super(new SubRangeSetRangesByLowerBound<C>(Range.<Cut<C>>all(), restriction,
TreeRangeSet.this.rangesByLowerBound));
this.restriction = restriction;
}
@Override
public boolean encloses(Range<C> range) {
if (!restriction.isEmpty() && restriction.encloses(range)) {
Range<C> enclosing = TreeRangeSet.this.rangeEnclosing(range);
return enclosing != null && !enclosing.intersection(restriction).isEmpty();
}
return false;
}
@Override
@Nullable
public Range<C> rangeContaining(C value) {
if (!restriction.contains(value)) {
return null;
}
Range<C> result = TreeRangeSet.this.rangeContaining(value);
return (result == null) ? null : result.intersection(restriction);
}
@Override
public void add(Range<C> rangeToAdd) {
checkArgument(restriction.encloses(rangeToAdd), "Cannot add range %s to subRangeSet(%s)", rangeToAdd,
restriction);
super.add(rangeToAdd);
}
@Override
public void remove(Range<C> rangeToRemove) {
if (rangeToRemove.isConnected(restriction)) {
TreeRangeSet.this.remove(rangeToRemove.intersection(restriction));
}
}
@Override
public boolean contains(C value) {
return restriction.contains(value) && TreeRangeSet.this.contains(value);
}
@Override
public void clear() {
TreeRangeSet.this.remove(restriction);
}
@Override
public RangeSet<C> subRangeSet(Range<C> view) {
if (view.encloses(restriction)) {
return this;
} else if (view.isConnected(restriction)) {
return new SubRangeSet(restriction.intersection(view));
} else {
return ImmutableRangeSet.of();
}
}
}
}