EaglerForge/sources/main/java/com/google/common/collect/Sets.java

1689 lines
54 KiB
Java

/*
* Copyright (C) 2007 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import java.io.Serializable;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.NavigableSet;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import javax.annotation.Nullable;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.collect.Collections2.FilteredCollection;
/**
* Static utility methods pertaining to {@link Set} instances. Also see this
* class's counterparts {@link Lists}, {@link Maps} and {@link Queues}.
*
* <p>
* See the Guava User Guide article on <a href=
* "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Sets">
* {@code Sets}</a>.
*
* @author Kevin Bourrillion
* @author Jared Levy
* @author Chris Povirk
* @since 2.0 (imported from Google Collections Library)
*/
@GwtCompatible(emulated = true)
public final class Sets {
private Sets() {
}
/**
* {@link AbstractSet} substitute without the potentially-quadratic
* {@code removeAll} implementation.
*/
abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
@Override
public boolean removeAll(Collection<?> c) {
return removeAllImpl(this, c);
}
@Override
public boolean retainAll(Collection<?> c) {
return super.retainAll(checkNotNull(c)); // GWT compatibility
}
}
/**
* Returns an immutable set instance containing the given enum elements.
* Internally, the returned set will be backed by an {@link EnumSet}.
*
* <p>
* The iteration order of the returned set follows the enum's iteration order,
* not the order in which the elements are provided to the method.
*
* @param anElement one of the elements the set should contain
* @param otherElements the rest of the elements the set should contain
* @return an immutable set containing those elements, minus duplicates
*/
// http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
@GwtCompatible(serializable = true)
public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(E anElement, E... otherElements) {
return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
}
/**
* Returns an immutable set instance containing the given enum elements.
* Internally, the returned set will be backed by an {@link EnumSet}.
*
* <p>
* The iteration order of the returned set follows the enum's iteration order,
* not the order in which the elements appear in the given collection.
*
* @param elements the elements, all of the same {@code enum} type, that the set
* should contain
* @return an immutable set containing those elements, minus duplicates
*/
// http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
@GwtCompatible(serializable = true)
public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
if (elements instanceof ImmutableEnumSet) {
return (ImmutableEnumSet<E>) elements;
} else if (elements instanceof Collection) {
Collection<E> collection = (Collection<E>) elements;
if (collection.isEmpty()) {
return ImmutableSet.of();
} else {
return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
}
} else {
Iterator<E> itr = elements.iterator();
if (itr.hasNext()) {
EnumSet<E> enumSet = EnumSet.of(itr.next());
Iterators.addAll(enumSet, itr);
return ImmutableEnumSet.asImmutable(enumSet);
} else {
return ImmutableSet.of();
}
}
}
/**
* Returns a new {@code EnumSet} instance containing the given elements. Unlike
* {@link EnumSet#copyOf(Collection)}, this method does not produce an exception
* on an empty collection, and it may be called on any iterable, not just a
* {@code Collection}.
*/
public static <E extends Enum<E>> EnumSet<E> newEnumSet(Iterable<E> iterable, Class<E> elementType) {
EnumSet<E> set = EnumSet.noneOf(elementType);
Iterables.addAll(set, iterable);
return set;
}
// HashSet
/**
* Creates a <i>mutable</i>, empty {@code HashSet} instance.
*
* <p>
* <b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()}
* instead.
*
* <p>
* <b>Note:</b> if {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf}
* instead.
*
* @return a new, empty {@code HashSet}
*/
public static <E> HashSet<E> newHashSet() {
return new HashSet<E>();
}
/**
* Creates a <i>mutable</i> {@code HashSet} instance containing the given
* elements in unspecified order.
*
* <p>
* <b>Note:</b> if mutability is not required and the elements are non-null, use
* an overload of {@link ImmutableSet#of()} (for varargs) or
* {@link ImmutableSet#copyOf(Object[])} (for an array) instead.
*
* <p>
* <b>Note:</b> if {@code E} is an {@link Enum} type, use
* {@link EnumSet#of(Enum, Enum[])} instead.
*
* @param elements the elements that the set should contain
* @return a new {@code HashSet} containing those elements (minus duplicates)
*/
public static <E> HashSet<E> newHashSet(E... elements) {
HashSet<E> set = newHashSetWithExpectedSize(elements.length);
Collections.addAll(set, elements);
return set;
}
/**
* Creates a {@code HashSet} instance, with a high enough "initial capacity"
* that it <i>should</i> hold {@code expectedSize} elements without growth. This
* behavior cannot be broadly guaranteed, but it is observed to be true for
* OpenJDK 1.6. It also can't be guaranteed that the method isn't inadvertently
* <i>oversizing</i> the returned set.
*
* @param expectedSize the number of elements you expect to add to the returned
* set
* @return a new, empty {@code HashSet} with enough capacity to hold {@code
* expectedSize} elements without resizing
* @throws IllegalArgumentException if {@code expectedSize} is negative
*/
public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
return new HashSet<E>(Maps.capacity(expectedSize));
}
/**
* Creates a <i>mutable</i> {@code HashSet} instance containing the given
* elements in unspecified order.
*
* <p>
* <b>Note:</b> if mutability is not required and the elements are non-null, use
* {@link ImmutableSet#copyOf(Iterable)} instead.
*
* <p>
* <b>Note:</b> if {@code E} is an {@link Enum} type, use
* {@link #newEnumSet(Iterable, Class)} instead.
*
* @param elements the elements that the set should contain
* @return a new {@code HashSet} containing those elements (minus duplicates)
*/
public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
return (elements instanceof Collection) ? new HashSet<E>(Collections2.cast(elements))
: newHashSet(elements.iterator());
}
/**
* Creates a <i>mutable</i> {@code HashSet} instance containing the given
* elements in unspecified order.
*
* <p>
* <b>Note:</b> if mutability is not required and the elements are non-null, use
* {@link ImmutableSet#copyOf(Iterable)} instead.
*
* <p>
* <b>Note:</b> if {@code E} is an {@link Enum} type, you should create an
* {@link EnumSet} instead.
*
* @param elements the elements that the set should contain
* @return a new {@code HashSet} containing those elements (minus duplicates)
*/
public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
HashSet<E> set = newHashSet();
Iterators.addAll(set, elements);
return set;
}
// LinkedHashSet
/**
* Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
*
* <p>
* <b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()}
* instead.
*
* @return a new, empty {@code LinkedHashSet}
*/
public static <E> LinkedHashSet<E> newLinkedHashSet() {
return new LinkedHashSet<E>();
}
/**
* Creates a {@code LinkedHashSet} instance, with a high enough "initial
* capacity" that it <i>should</i> hold {@code expectedSize} elements without
* growth. This behavior cannot be broadly guaranteed, but it is observed to be
* true for OpenJDK 1.6. It also can't be guaranteed that the method isn't
* inadvertently <i>oversizing</i> the returned set.
*
* @param expectedSize the number of elements you expect to add to the returned
* set
* @return a new, empty {@code LinkedHashSet} with enough capacity to hold
* {@code expectedSize} elements without resizing
* @throws IllegalArgumentException if {@code expectedSize} is negative
* @since 11.0
*/
public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
return new LinkedHashSet<E>(Maps.capacity(expectedSize));
}
/**
* Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given
* elements in order.
*
* <p>
* <b>Note:</b> if mutability is not required and the elements are non-null, use
* {@link ImmutableSet#copyOf(Iterable)} instead.
*
* @param elements the elements that the set should contain, in order
* @return a new {@code LinkedHashSet} containing those elements (minus
* duplicates)
*/
public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
if (elements instanceof Collection) {
return new LinkedHashSet<E>(Collections2.cast(elements));
}
LinkedHashSet<E> set = newLinkedHashSet();
Iterables.addAll(set, elements);
return set;
}
// TreeSet
/**
* Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the
* natural sort ordering of its elements.
*
* <p>
* <b>Note:</b> if mutability is not required, use
* {@link ImmutableSortedSet#of()} instead.
*
* @return a new, empty {@code TreeSet}
*/
public static <E extends Comparable> TreeSet<E> newTreeSet() {
return new TreeSet<E>();
}
/**
* Creates a <i>mutable</i> {@code TreeSet} instance containing the given
* elements sorted by their natural ordering.
*
* <p>
* <b>Note:</b> if mutability is not required, use
* {@link ImmutableSortedSet#copyOf(Iterable)} instead.
*
* <p>
* <b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit
* comparator, this method has different behavior than
* {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code TreeSet} with that
* comparator.
*
* @param elements the elements that the set should contain
* @return a new {@code TreeSet} containing those elements (minus duplicates)
*/
public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
TreeSet<E> set = newTreeSet();
Iterables.addAll(set, elements);
return set;
}
/**
* Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given
* comparator.
*
* <p>
* <b>Note:</b> if mutability is not required, use {@code
* ImmutableSortedSet.orderedBy(comparator).build()} instead.
*
* @param comparator the comparator to use to sort the set
* @return a new, empty {@code TreeSet}
* @throws NullPointerException if {@code comparator} is null
*/
public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
return new TreeSet<E>(checkNotNull(comparator));
}
/**
* Creates an empty {@code Set} that uses identity to determine equality. It
* compares object references, instead of calling {@code equals}, to determine
* whether a provided object matches an element in the set. For example,
* {@code contains} returns {@code false} when passed an object that equals a
* set member, but isn't the same instance. This behavior is similar to the way
* {@code IdentityHashMap} handles key lookups.
*
* @since 8.0
*/
public static <E> Set<E> newIdentityHashSet() {
return Sets.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
}
/**
* Creates an {@code EnumSet} consisting of all enum values that are not in the
* specified collection. If the collection is an {@link EnumSet}, this method
* has the same behavior as {@link EnumSet#complementOf}. Otherwise, the
* specified collection must contain at least one element, in order to determine
* the element type. If the collection could be empty, use
* {@link #complementOf(Collection, Class)} instead of this method.
*
* @param collection the collection whose complement should be stored in the
* enum set
* @return a new, modifiable {@code EnumSet} containing all values of the enum
* that aren't present in the given collection
* @throws IllegalArgumentException if {@code collection} is not an
* {@code EnumSet} instance and contains no
* elements
*/
public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
if (collection instanceof EnumSet) {
return EnumSet.complementOf((EnumSet<E>) collection);
}
checkArgument(!collection.isEmpty(), "collection is empty; use the other version of this method");
Class<E> type = collection.iterator().next().getDeclaringClass();
return makeComplementByHand(collection, type);
}
/**
* Creates an {@code EnumSet} consisting of all enum values that are not in the
* specified collection. This is equivalent to {@link EnumSet#complementOf}, but
* can act on any input collection, as long as the elements are of enum type.
*
* @param collection the collection whose complement should be stored in the
* {@code EnumSet}
* @param type the type of the elements in the set
* @return a new, modifiable {@code EnumSet} initially containing all the values
* of the enum not present in the given collection
*/
public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection, Class<E> type) {
checkNotNull(collection);
return (collection instanceof EnumSet) ? EnumSet.complementOf((EnumSet<E>) collection)
: makeComplementByHand(collection, type);
}
private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(Collection<E> collection, Class<E> type) {
EnumSet<E> result = EnumSet.allOf(type);
result.removeAll(collection);
return result;
}
/**
* Returns a set backed by the specified map. The resulting set displays the
* same ordering, concurrency, and performance characteristics as the backing
* map. In essence, this factory method provides a {@link Set} implementation
* corresponding to any {@link Map} implementation. There is no need to use this
* method on a {@link Map} implementation that already has a corresponding
* {@link Set} implementation (such as {@link java.util.HashMap} or
* {@link java.util.TreeMap}).
*
* <p>
* Each method invocation on the set returned by this method results in exactly
* one method invocation on the backing map or its {@code keySet} view, with one
* exception. The {@code addAll} method is implemented as a sequence of
* {@code put} invocations on the backing map.
*
* <p>
* The specified map must be empty at the time this method is invoked, and
* should not be accessed directly after this method returns. These conditions
* are ensured if the map is created empty, passed directly to this method, and
* no reference to the map is retained, as illustrated in the following code
* fragment:
*
* <pre>
* {
* &#64;code
*
* Set<Object> identityHashSet = Sets.newSetFromMap(new IdentityHashMap<Object, Boolean>());
* }
* </pre>
*
* <p>
* This method has the same behavior as the JDK 6 method
* {@code Collections.newSetFromMap()}. The returned set is serializable if the
* backing map is.
*
* @param map the backing map
* @return the set backed by the map
* @throws IllegalArgumentException if {@code map} is not empty
*/
public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
return Platform.newSetFromMap(map);
}
/**
* An unmodifiable view of a set which may be backed by other sets; this view
* will change as the backing sets do. Contains methods to copy the data into a
* new set which will then remain stable. There is usually no reason to retain a
* reference of type {@code SetView}; typically, you either use it as a plain
* {@link Set}, or immediately invoke {@link #immutableCopy} or
* {@link #copyInto} and forget the {@code SetView} itself.
*
* @since 2.0 (imported from Google Collections Library)
*/
public abstract static class SetView<E> extends AbstractSet<E> {
private SetView() {
} // no subclasses but our own
/**
* Returns an immutable copy of the current contents of this set view. Does not
* support null elements.
*
* <p>
* <b>Warning:</b> this may have unexpected results if a backing set of this
* view uses a nonstandard notion of equivalence, for example if it is a
* {@link TreeSet} using a comparator that is inconsistent with
* {@link Object#equals(Object)}.
*/
public ImmutableSet<E> immutableCopy() {
return ImmutableSet.copyOf(this);
}
/**
* Copies the current contents of this set view into an existing set. This
* method has equivalent behavior to {@code set.addAll(this)}, assuming that all
* the sets involved are based on the same notion of equivalence.
*
* @return a reference to {@code set}, for convenience
*/
// Note: S should logically extend Set<? super E> but can't due to either
// some javac bug or some weirdness in the spec, not sure which.
public <S extends Set<E>> S copyInto(S set) {
set.addAll(this);
return set;
}
}
/**
* Returns an unmodifiable <b>view</b> of the union of two sets. The returned
* set contains all elements that are contained in either backing set. Iterating
* over the returned set iterates first over all the elements of {@code set1},
* then over each element of {@code set2}, in order, that is not contained in
* {@code set1}.
*
* <p>
* Results are undefined if {@code set1} and {@code set2} are sets based on
* different equivalence relations (as {@link HashSet}, {@link TreeSet}, and the
* {@link Map#keySet} of an {@code IdentityHashMap} all are).
*
* <p>
* <b>Note:</b> The returned view performs better when {@code set1} is the
* smaller of the two sets. If you have reason to believe one of your sets will
* generally be smaller than the other, pass it first.
*
* <p>
* Further, note that the current implementation is not suitable for nested
* {@code union} views, i.e. the following should be avoided when in a loop:
* {@code union = Sets.union(union, anotherSet);}, since iterating over the
* resulting set has a cubic complexity to the depth of the nesting.
*/
public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
final Set<? extends E> set2minus1 = difference(set2, set1);
return new SetView<E>() {
@Override
public int size() {
return set1.size() + set2minus1.size();
}
@Override
public boolean isEmpty() {
return set1.isEmpty() && set2.isEmpty();
}
@Override
public Iterator<E> iterator() {
return Iterators.unmodifiableIterator(Iterators.concat(set1.iterator(), set2minus1.iterator()));
}
@Override
public boolean contains(Object object) {
return set1.contains(object) || set2.contains(object);
}
@Override
public <S extends Set<E>> S copyInto(S set) {
set.addAll(set1);
set.addAll(set2);
return set;
}
@Override
public ImmutableSet<E> immutableCopy() {
return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
}
};
}
/**
* Returns an unmodifiable <b>view</b> of the intersection of two sets. The
* returned set contains all elements that are contained by both backing sets.
* The iteration order of the returned set matches that of {@code set1}.
*
* <p>
* Results are undefined if {@code set1} and {@code set2} are sets based on
* different equivalence relations (as {@code HashSet}, {@code TreeSet}, and the
* keySet of an {@code IdentityHashMap} all are).
*
* <p>
* <b>Note:</b> The returned view performs slightly better when {@code
* set1} is the smaller of the two sets. If you have reason to believe one of
* your sets will generally be smaller than the other, pass it first.
* Unfortunately, since this method sets the generic type of the returned set
* based on the type of the first set passed, this could in rare cases force you
* to make a cast, for example:
*
* <pre>
* {@code
*
* Set<Object> aFewBadObjects = ...
* Set<String> manyBadStrings = ...
*
* // impossible for a non-String to be in the intersection
* SuppressWarnings("unchecked")
* Set<String> badStrings = (Set) Sets.intersection(
* aFewBadObjects, manyBadStrings);}
* </pre>
*
* <p>
* This is unfortunate, but should come up only very rarely.
*/
public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
final Predicate<Object> inSet2 = Predicates.in(set2);
return new SetView<E>() {
@Override
public Iterator<E> iterator() {
return Iterators.filter(set1.iterator(), inSet2);
}
@Override
public int size() {
return Iterators.size(iterator());
}
@Override
public boolean isEmpty() {
return !iterator().hasNext();
}
@Override
public boolean contains(Object object) {
return set1.contains(object) && set2.contains(object);
}
@Override
public boolean containsAll(Collection<?> collection) {
return set1.containsAll(collection) && set2.containsAll(collection);
}
};
}
/**
* Returns an unmodifiable <b>view</b> of the difference of two sets. The
* returned set contains all elements that are contained by {@code set1} and not
* contained by {@code set2}. {@code set2} may also contain elements not present
* in {@code set1}; these are simply ignored. The iteration order of the
* returned set matches that of {@code set1}.
*
* <p>
* Results are undefined if {@code set1} and {@code set2} are sets based on
* different equivalence relations (as {@code HashSet}, {@code TreeSet}, and the
* keySet of an {@code IdentityHashMap} all are).
*/
public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
final Predicate<Object> notInSet2 = Predicates.not(Predicates.in(set2));
return new SetView<E>() {
@Override
public Iterator<E> iterator() {
return Iterators.filter(set1.iterator(), notInSet2);
}
@Override
public int size() {
return Iterators.size(iterator());
}
@Override
public boolean isEmpty() {
return set2.containsAll(set1);
}
@Override
public boolean contains(Object element) {
return set1.contains(element) && !set2.contains(element);
}
};
}
/**
* Returns an unmodifiable <b>view</b> of the symmetric difference of two sets.
* The returned set contains all elements that are contained in either
* {@code set1} or {@code set2} but not in both. The iteration order of the
* returned set is undefined.
*
* <p>
* Results are undefined if {@code set1} and {@code set2} are sets based on
* different equivalence relations (as {@code HashSet}, {@code TreeSet}, and the
* keySet of an {@code IdentityHashMap} all are).
*
* @since 3.0
*/
public static <E> SetView<E> symmetricDifference(Set<? extends E> set1, Set<? extends E> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
// TODO(kevinb): Replace this with a more efficient implementation
return difference(union(set1, set2), intersection(set1, set2));
}
/**
* Returns the elements of {@code unfiltered} that satisfy a predicate. The
* returned set is a live view of {@code unfiltered}; changes to one affect the
* other.
*
* <p>
* The resulting set's iterator does not support {@code remove()}, but all other
* set methods are supported. When given an element that doesn't satisfy the
* predicate, the set's {@code add()} and {@code addAll()} methods throw an
* {@link IllegalArgumentException}. When methods such as {@code
* removeAll()} and {@code clear()} are called on the filtered set, only
* elements that satisfy the filter will be removed from the underlying set.
*
* <p>
* The returned set isn't threadsafe or serializable, even if {@code unfiltered}
* is.
*
* <p>
* Many of the filtered set's methods, such as {@code size()}, iterate across
* every element in the underlying set and determine which elements satisfy the
* filter. When a live view is <i>not</i> needed, it may be faster to copy
* {@code Iterables.filter(unfiltered, predicate)} and use the copy.
*
* <p>
* <b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as
* documented at {@link Predicate#apply}. Do not provide a predicate such as
* {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
* equals. (See {@link Iterables#filter(Iterable, Class)} for related
* functionality.)
*/
// TODO(kevinb): how to omit that last sentence when building GWT javadoc?
public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
if (unfiltered instanceof SortedSet) {
return filter((SortedSet<E>) unfiltered, predicate);
}
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
}
return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
}
private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
super(unfiltered, predicate);
}
@Override
public boolean equals(@Nullable Object object) {
return equalsImpl(this, object);
}
@Override
public int hashCode() {
return hashCodeImpl(this);
}
}
/**
* Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy
* a predicate. The returned set is a live view of {@code unfiltered}; changes
* to one affect the other.
*
* <p>
* The resulting set's iterator does not support {@code remove()}, but all other
* set methods are supported. When given an element that doesn't satisfy the
* predicate, the set's {@code add()} and {@code addAll()} methods throw an
* {@link IllegalArgumentException}. When methods such as {@code removeAll()}
* and {@code clear()} are called on the filtered set, only elements that
* satisfy the filter will be removed from the underlying set.
*
* <p>
* The returned set isn't threadsafe or serializable, even if {@code unfiltered}
* is.
*
* <p>
* Many of the filtered set's methods, such as {@code size()}, iterate across
* every element in the underlying set and determine which elements satisfy the
* filter. When a live view is <i>not</i> needed, it may be faster to copy
* {@code Iterables.filter(unfiltered, predicate)} and use the copy.
*
* <p>
* <b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as
* documented at {@link Predicate#apply}. Do not provide a predicate such as
* {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
* equals. (See {@link Iterables#filter(Iterable, Class)} for related
* functionality.)
*
* @since 11.0
*/
public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
return Platform.setsFilterSortedSet(unfiltered, predicate);
}
static <E> SortedSet<E> filterSortedIgnoreNavigable(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
}
return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
}
private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
super(unfiltered, predicate);
}
@Override
public Comparator<? super E> comparator() {
return ((SortedSet<E>) unfiltered).comparator();
}
@Override
public SortedSet<E> subSet(E fromElement, E toElement) {
return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
}
@Override
public SortedSet<E> headSet(E toElement) {
return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
}
@Override
public SortedSet<E> tailSet(E fromElement) {
return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
}
@Override
public E first() {
return iterator().next();
}
@Override
public E last() {
SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
while (true) {
E element = sortedUnfiltered.last();
if (predicate.apply(element)) {
return element;
}
sortedUnfiltered = sortedUnfiltered.headSet(element);
}
}
}
/**
* Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that
* satisfy a predicate. The returned set is a live view of {@code unfiltered};
* changes to one affect the other.
*
* <p>
* The resulting set's iterator does not support {@code remove()}, but all other
* set methods are supported. When given an element that doesn't satisfy the
* predicate, the set's {@code add()} and {@code addAll()} methods throw an
* {@link IllegalArgumentException}. When methods such as {@code removeAll()}
* and {@code clear()} are called on the filtered set, only elements that
* satisfy the filter will be removed from the underlying set.
*
* <p>
* The returned set isn't threadsafe or serializable, even if {@code unfiltered}
* is.
*
* <p>
* Many of the filtered set's methods, such as {@code size()}, iterate across
* every element in the underlying set and determine which elements satisfy the
* filter. When a live view is <i>not</i> needed, it may be faster to copy
* {@code Iterables.filter(unfiltered, predicate)} and use the copy.
*
* <p>
* <b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as
* documented at {@link Predicate#apply}. Do not provide a predicate such as
* {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
* equals. (See {@link Iterables#filter(Iterable, Class)} for related
* functionality.)
*
* @since 14.0
*/
@GwtIncompatible("NavigableSet")
@SuppressWarnings("unchecked")
public static <E> NavigableSet<E> filter(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
}
return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
}
@GwtIncompatible("NavigableSet")
private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> implements NavigableSet<E> {
FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
super(unfiltered, predicate);
}
NavigableSet<E> unfiltered() {
return (NavigableSet<E>) unfiltered;
}
@Override
@Nullable
public E lower(E e) {
return Iterators.getNext(headSet(e, false).descendingIterator(), null);
}
@Override
@Nullable
public E floor(E e) {
return Iterators.getNext(headSet(e, true).descendingIterator(), null);
}
@Override
public E ceiling(E e) {
return Iterables.getFirst(tailSet(e, true), null);
}
@Override
public E higher(E e) {
return Iterables.getFirst(tailSet(e, false), null);
}
@Override
public E pollFirst() {
return Iterables.removeFirstMatching(unfiltered(), predicate);
}
@Override
public E pollLast() {
return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
}
@Override
public NavigableSet<E> descendingSet() {
return Sets.filter(unfiltered().descendingSet(), predicate);
}
@Override
public Iterator<E> descendingIterator() {
return Iterators.filter(unfiltered().descendingIterator(), predicate);
}
@Override
public E last() {
return descendingIterator().next();
}
@Override
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return filter(unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
}
@Override
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return filter(unfiltered().headSet(toElement, inclusive), predicate);
}
@Override
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
}
}
/**
* Returns every possible list that can be formed by choosing one element from
* each of the given sets in order; the "n-ary
* <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
* product</a>" of the sets. For example:
*
* <pre>
* {@code
*
* Sets.cartesianProduct(ImmutableList.of(
* ImmutableSet.of(1, 2),
* ImmutableSet.of("A", "B", "C")))}
* </pre>
*
* <p>
* returns a set containing six lists:
*
* <ul>
* <li>{@code ImmutableList.of(1, "A")}
* <li>{@code ImmutableList.of(1, "B")}
* <li>{@code ImmutableList.of(1, "C")}
* <li>{@code ImmutableList.of(2, "A")}
* <li>{@code ImmutableList.of(2, "B")}
* <li>{@code ImmutableList.of(2, "C")}
* </ul>
*
* <p>
* The result is guaranteed to be in the "traditional", lexicographical order
* for Cartesian products that you would get from nesting for loops:
*
* <pre>
* {@code
*
* for (B b0 : sets.get(0)) {
* for (B b1 : sets.get(1)) {
* ...
* ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
* // operate on tuple
* }
* }}
* </pre>
*
* <p>
* Note that if any input set is empty, the Cartesian product will also be
* empty. If no sets at all are provided (an empty list), the resulting
* Cartesian product has one element, an empty list (counter-intuitive, but
* mathematically consistent).
*
* <p>
* <i>Performance notes:</i> while the cartesian product of sets of size
* {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
* consumption is much smaller. When the cartesian set is constructed, the input
* sets are merely copied. Only as the resulting set is iterated are the
* individual lists created, and these are not retained after iteration.
*
* @param sets the sets to choose elements from, in the order that the elements
* chosen from those sets should appear in the resulting lists
* @param <B> any common base class shared by all axes (often just
* {@link Object})
* @return the Cartesian product, as an immutable set containing immutable lists
* @throws NullPointerException if {@code sets}, any one of the {@code sets}, or
* any element of a provided set is null
* @since 2.0
*/
public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
return CartesianSet.create(sets);
}
/**
* Returns every possible list that can be formed by choosing one element from
* each of the given sets in order; the "n-ary
* <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
* product</a>" of the sets. For example:
*
* <pre>
* {@code
*
* Sets.cartesianProduct(
* ImmutableSet.of(1, 2),
* ImmutableSet.of("A", "B", "C"))}
* </pre>
*
* <p>
* returns a set containing six lists:
*
* <ul>
* <li>{@code ImmutableList.of(1, "A")}
* <li>{@code ImmutableList.of(1, "B")}
* <li>{@code ImmutableList.of(1, "C")}
* <li>{@code ImmutableList.of(2, "A")}
* <li>{@code ImmutableList.of(2, "B")}
* <li>{@code ImmutableList.of(2, "C")}
* </ul>
*
* <p>
* The result is guaranteed to be in the "traditional", lexicographical order
* for Cartesian products that you would get from nesting for loops:
*
* <pre>
* {@code
*
* for (B b0 : sets.get(0)) {
* for (B b1 : sets.get(1)) {
* ...
* ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
* // operate on tuple
* }
* }}
* </pre>
*
* <p>
* Note that if any input set is empty, the Cartesian product will also be
* empty. If no sets at all are provided (an empty list), the resulting
* Cartesian product has one element, an empty list (counter-intuitive, but
* mathematically consistent).
*
* <p>
* <i>Performance notes:</i> while the cartesian product of sets of size
* {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
* consumption is much smaller. When the cartesian set is constructed, the input
* sets are merely copied. Only as the resulting set is iterated are the
* individual lists created, and these are not retained after iteration.
*
* @param sets the sets to choose elements from, in the order that the elements
* chosen from those sets should appear in the resulting lists
* @param <B> any common base class shared by all axes (often just
* {@link Object})
* @return the Cartesian product, as an immutable set containing immutable lists
* @throws NullPointerException if {@code sets}, any one of the {@code sets}, or
* any element of a provided set is null
* @since 2.0
*/
public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
return cartesianProduct(Arrays.asList(sets));
}
private static final class CartesianSet<E> extends ForwardingCollection<List<E>> implements Set<List<E>> {
private transient final ImmutableList<ImmutableSet<E>> axes;
private transient final CartesianList<E> delegate;
static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<ImmutableSet<E>>(
sets.size());
for (Set<? extends E> set : sets) {
ImmutableSet<E> copy = ImmutableSet.copyOf(set);
if (copy.isEmpty()) {
return ImmutableSet.of();
}
axesBuilder.add(copy);
}
final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
ImmutableList<List<E>> listAxes = new ImmutableList<List<E>>() {
@Override
public int size() {
return axes.size();
}
@Override
public List<E> get(int index) {
return axes.get(index).asList();
}
@Override
boolean isPartialView() {
return true;
}
};
return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
}
private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
this.axes = axes;
this.delegate = delegate;
}
@Override
protected Collection<List<E>> delegate() {
return delegate;
}
@Override
public boolean equals(@Nullable Object object) {
// Warning: this is broken if size() == 0, so it is critical that we
// substitute an empty ImmutableSet to the user in place of this
if (object instanceof CartesianSet) {
CartesianSet<?> that = (CartesianSet<?>) object;
return this.axes.equals(that.axes);
}
return super.equals(object);
}
@Override
public int hashCode() {
// Warning: this is broken if size() == 0, so it is critical that we
// substitute an empty ImmutableSet to the user in place of this
// It's a weird formula, but tests prove it works.
int adjust = size() - 1;
for (int i = 0; i < axes.size(); i++) {
adjust *= 31;
adjust = ~~adjust;
// in GWT, we have to deal with integer overflow carefully
}
int hash = 1;
for (Set<E> axis : axes) {
hash = 31 * hash + (size() / axis.size() * axis.hashCode());
hash = ~~hash;
}
hash += adjust;
return ~~hash;
}
}
/**
* Returns the set of all possible subsets of {@code set}. For example,
* {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2},
* {1, 2}}}.
*
* <p>
* Elements appear in these subsets in the same iteration order as they appeared
* in the input set. The order in which these subsets appear in the outer set is
* undefined. Note that the power set of the empty set is not the empty set, but
* a one-element set containing the empty set.
*
* <p>
* The returned set and its constituent sets use {@code equals} to decide
* whether two elements are identical, even if the input set uses a different
* concept of equivalence.
*
* <p>
* <i>Performance notes:</i> while the power set of a set with size {@code
* n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the
* power set is constructed, the input set is merely copied. Only as the power
* set is iterated are the individual subsets created, and these subsets
* themselves occupy only a small constant amount of memory.
*
* @param set the set of elements to construct a power set from
* @return the power set, as an immutable set of immutable sets
* @throws IllegalArgumentException if {@code set} has more than 30 unique
* elements (causing the power set size to
* exceed the {@code int} range)
* @throws NullPointerException if {@code set} is or contains {@code null}
* @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at
* Wikipedia</a>
* @since 4.0
*/
@GwtCompatible(serializable = false)
public static <E> Set<Set<E>> powerSet(Set<E> set) {
return new PowerSet<E>(set);
}
private static final class SubSet<E> extends AbstractSet<E> {
private final ImmutableMap<E, Integer> inputSet;
private final int mask;
SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
this.inputSet = inputSet;
this.mask = mask;
}
@Override
public Iterator<E> iterator() {
return new UnmodifiableIterator<E>() {
final ImmutableList<E> elements = inputSet.keySet().asList();
int remainingSetBits = mask;
@Override
public boolean hasNext() {
return remainingSetBits != 0;
}
@Override
public E next() {
int index = Integer.numberOfTrailingZeros(remainingSetBits);
if (index == 32) {
throw new NoSuchElementException();
}
remainingSetBits &= ~(1 << index);
return elements.get(index);
}
};
}
@Override
public int size() {
return Integer.bitCount(mask);
}
@Override
public boolean contains(@Nullable Object o) {
Integer index = inputSet.get(o);
return index != null && (mask & (1 << index)) != 0;
}
}
private static final class PowerSet<E> extends AbstractSet<Set<E>> {
final ImmutableMap<E, Integer> inputSet;
PowerSet(Set<E> input) {
ImmutableMap.Builder<E, Integer> builder = ImmutableMap.builder();
int i = 0;
for (E e : checkNotNull(input)) {
builder.put(e, i++);
}
this.inputSet = builder.build();
checkArgument(inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size());
}
@Override
public int size() {
return 1 << inputSet.size();
}
@Override
public boolean isEmpty() {
return false;
}
@Override
public Iterator<Set<E>> iterator() {
return new AbstractIndexedListIterator<Set<E>>(size()) {
@Override
protected Set<E> get(final int setBits) {
return new SubSet<E>(inputSet, setBits);
}
};
}
@Override
public boolean contains(@Nullable Object obj) {
if (obj instanceof Set) {
Set<?> set = (Set<?>) obj;
return inputSet.keySet().containsAll(set);
}
return false;
}
@Override
public boolean equals(@Nullable Object obj) {
if (obj instanceof PowerSet) {
PowerSet<?> that = (PowerSet<?>) obj;
return inputSet.equals(that.inputSet);
}
return super.equals(obj);
}
@Override
public int hashCode() {
/*
* The sum of the sums of the hash codes in each subset is just the sum of each
* input element's hash code times the number of sets that element appears in.
* Each element appears in exactly half of the 2^n sets, so:
*/
return inputSet.keySet().hashCode() << (inputSet.size() - 1);
}
@Override
public String toString() {
return "powerSet(" + inputSet + ")";
}
}
/**
* An implementation for {@link Set#hashCode()}.
*/
static int hashCodeImpl(Set<?> s) {
int hashCode = 0;
for (Object o : s) {
hashCode += o != null ? o.hashCode() : 0;
hashCode = ~~hashCode;
// Needed to deal with unusual integer overflow in GWT.
}
return hashCode;
}
/**
* An implementation for {@link Set#equals(Object)}.
*/
static boolean equalsImpl(Set<?> s, @Nullable Object object) {
if (s == object) {
return true;
}
if (object instanceof Set) {
Set<?> o = (Set<?>) object;
try {
return s.size() == o.size() && s.containsAll(o);
} catch (NullPointerException ignored) {
return false;
} catch (ClassCastException ignored) {
return false;
}
}
return false;
}
/**
* Returns an unmodifiable view of the specified navigable set. This method
* allows modules to provide users with "read-only" access to internal navigable
* sets. Query operations on the returned set "read through" to the specified
* set, and attempts to modify the returned set, whether direct or via its
* collection views, result in an {@code UnsupportedOperationException}.
*
* <p>
* The returned navigable set will be serializable if the specified navigable
* set is serializable.
*
* @param set the navigable set for which an unmodifiable view is to be returned
* @return an unmodifiable view of the specified navigable set
* @since 12.0
*/
@GwtIncompatible("NavigableSet")
public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
if (set instanceof ImmutableSortedSet || set instanceof UnmodifiableNavigableSet) {
return set;
}
return new UnmodifiableNavigableSet<E>(set);
}
@GwtIncompatible("NavigableSet")
static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
implements NavigableSet<E>, Serializable {
private final NavigableSet<E> delegate;
UnmodifiableNavigableSet(NavigableSet<E> delegate) {
this.delegate = checkNotNull(delegate);
}
@Override
protected SortedSet<E> delegate() {
return Collections.unmodifiableSortedSet(delegate);
}
@Override
public E lower(E e) {
return delegate.lower(e);
}
@Override
public E floor(E e) {
return delegate.floor(e);
}
@Override
public E ceiling(E e) {
return delegate.ceiling(e);
}
@Override
public E higher(E e) {
return delegate.higher(e);
}
@Override
public E pollFirst() {
throw new UnsupportedOperationException();
}
@Override
public E pollLast() {
throw new UnsupportedOperationException();
}
private transient UnmodifiableNavigableSet<E> descendingSet;
@Override
public NavigableSet<E> descendingSet() {
UnmodifiableNavigableSet<E> result = descendingSet;
if (result == null) {
result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
result.descendingSet = this;
}
return result;
}
@Override
public Iterator<E> descendingIterator() {
return Iterators.unmodifiableIterator(delegate.descendingIterator());
}
@Override
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return unmodifiableNavigableSet(delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
}
@Override
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
}
@Override
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
}
private static final long serialVersionUID = 0;
}
/**
* Returns a synchronized (thread-safe) navigable set backed by the specified
* navigable set. In order to guarantee serial access, it is critical that
* <b>all</b> access to the backing navigable set is accomplished through the
* returned navigable set (or its views).
*
* <p>
* It is imperative that the user manually synchronize on the returned sorted
* set when iterating over it or any of its {@code descendingSet},
* {@code subSet}, {@code headSet}, or {@code tailSet} views.
*
* <pre>
* {@code
*
* NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
* ...
* synchronized (set) {
* // Must be in the synchronized block
* Iterator<E> it = set.iterator();
* while (it.hasNext()) {
* foo(it.next());
* }
* }}
* </pre>
*
* <p>
* or:
*
* <pre>
* {@code
*
* NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
* NavigableSet<E> set2 = set.descendingSet().headSet(foo);
* ...
* synchronized (set) { // Note: set, not set2!!!
* // Must be in the synchronized block
* Iterator<E> it = set2.descendingIterator();
* while (it.hasNext())
* foo(it.next());
* }
* }}
* </pre>
*
* <p>
* Failure to follow this advice may result in non-deterministic behavior.
*
* <p>
* The returned navigable set will be serializable if the specified navigable
* set is serializable.
*
* @param navigableSet the navigable set to be "wrapped" in a synchronized
* navigable set.
* @return a synchronized view of the specified navigable set.
* @since 13.0
*/
@GwtIncompatible("NavigableSet")
public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
return Synchronized.navigableSet(navigableSet);
}
/**
* Remove each element in an iterable from a set.
*/
static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
boolean changed = false;
while (iterator.hasNext()) {
changed |= set.remove(iterator.next());
}
return changed;
}
static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
checkNotNull(collection); // for GWT
if (collection instanceof Multiset) {
collection = ((Multiset<?>) collection).elementSet();
}
/*
* AbstractSet.removeAll(List) has quadratic behavior if the list size is just
* less than the set's size. We augment the test by assuming that sets have fast
* contains() performance, and other collections don't. See
* http://code.google.com/p/guava-libraries/issues/detail?id=1013
*/
if (collection instanceof Set && collection.size() > set.size()) {
return Iterators.removeAll(set.iterator(), collection);
} else {
return removeAllImpl(set, collection.iterator());
}
}
@GwtIncompatible("NavigableSet")
static class DescendingSet<E> extends ForwardingNavigableSet<E> {
private final NavigableSet<E> forward;
DescendingSet(NavigableSet<E> forward) {
this.forward = forward;
}
@Override
protected NavigableSet<E> delegate() {
return forward;
}
@Override
public E lower(E e) {
return forward.higher(e);
}
@Override
public E floor(E e) {
return forward.ceiling(e);
}
@Override
public E ceiling(E e) {
return forward.floor(e);
}
@Override
public E higher(E e) {
return forward.lower(e);
}
@Override
public E pollFirst() {
return forward.pollLast();
}
@Override
public E pollLast() {
return forward.pollFirst();
}
@Override
public NavigableSet<E> descendingSet() {
return forward;
}
@Override
public Iterator<E> descendingIterator() {
return forward.iterator();
}
@Override
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
}
@Override
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return forward.tailSet(toElement, inclusive).descendingSet();
}
@Override
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return forward.headSet(fromElement, inclusive).descendingSet();
}
@SuppressWarnings("unchecked")
@Override
public Comparator<? super E> comparator() {
Comparator<? super E> forwardComparator = forward.comparator();
if (forwardComparator == null) {
return (Comparator) Ordering.natural().reverse();
} else {
return reverse(forwardComparator);
}
}
// If we inline this, we get a javac error.
private static <T> Ordering<T> reverse(Comparator<T> forward) {
return Ordering.from(forward).reverse();
}
@Override
public E first() {
return forward.last();
}
@Override
public SortedSet<E> headSet(E toElement) {
return standardHeadSet(toElement);
}
@Override
public E last() {
return forward.first();
}
@Override
public SortedSet<E> subSet(E fromElement, E toElement) {
return standardSubSet(fromElement, toElement);
}
@Override
public SortedSet<E> tailSet(E fromElement) {
return standardTailSet(fromElement);
}
@Override
public Iterator<E> iterator() {
return forward.descendingIterator();
}
@Override
public Object[] toArray() {
return standardToArray();
}
@Override
public <T> T[] toArray(T[] array) {
return standardToArray(array);
}
@Override
public String toString() {
return standardToString();
}
}
}