EaglerForge/sources/main/java/com/google/common/collect/Range.java

747 lines
24 KiB
Java

/*
* Copyright (C) 2008 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkNotNull;
import java.io.Serializable;
import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.SortedSet;
import javax.annotation.Nullable;
import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Equivalence;
import com.google.common.base.Function;
import com.google.common.base.Predicate;
/**
* A range (or "interval") defines the <i>boundaries</i> around a contiguous
* span of values of some {@code Comparable} type; for example, "integers from 1
* to 100 inclusive." Note that it is not possible to <i>iterate</i> over these
* contained values. To do so, pass this range instance and an appropriate
* {@link DiscreteDomain} to {@link ContiguousSet#create}.
*
* <h3>Types of ranges</h3>
*
* <p>
* Each end of the range may be bounded or unbounded. If bounded, there is an
* associated <i>endpoint</i> value, and the range is considered to be either
* <i>open</i> (does not include the endpoint) or <i>closed</i> (includes the
* endpoint) on that side. With three possibilities on each side, this yields
* nine basic types of ranges, enumerated below. (Notation: a square bracket
* ({@code [ ]}) indicates that the range is closed on that side; a parenthesis
* ({@code ( )}) means it is either open or unbounded. The construct {@code {x |
* statement}} is read "the set of all <i>x</i> such that <i>statement</i>.")
*
* <blockquote>
* <table>
* <tr>
* <td><b>Notation</b>
* <td><b>Definition</b>
* <td><b>Factory method</b>
* <tr>
* <td>{@code (a..b)}
* <td>{@code {x | a < x < b}}
* <td>{@link Range#open open}
* <tr>
* <td>{@code [a..b]}
* <td>{@code {x | a <= x <= b}}
* <td>{@link Range#closed closed}
* <tr>
* <td>{@code (a..b]}
* <td>{@code {x | a < x <= b}}
* <td>{@link Range#openClosed openClosed}
* <tr>
* <td>{@code [a..b)}
* <td>{@code {x | a <= x < b}}
* <td>{@link Range#closedOpen closedOpen}
* <tr>
* <td>{@code (a..+∞)}
* <td>{@code {x | x > a}}
* <td>{@link Range#greaterThan greaterThan}
* <tr>
* <td>{@code [a..+∞)}
* <td>{@code {x | x >= a}}
* <td>{@link Range#atLeast atLeast}
* <tr>
* <td>{@code (-∞..b)}
* <td>{@code {x | x < b}}
* <td>{@link Range#lessThan lessThan}
* <tr>
* <td>{@code (-∞..b]}
* <td>{@code {x | x <= b}}
* <td>{@link Range#atMost atMost}
* <tr>
* <td>{@code (-∞..+∞)}
* <td>{@code {x}}
* <td>{@link Range#all all}
* </table>
* </blockquote>
*
* <p>
* When both endpoints exist, the upper endpoint may not be less than the lower.
* The endpoints may be equal only if at least one of the bounds is closed:
*
* <ul>
* <li>{@code [a..a]} : a singleton range
* <li>{@code [a..a); (a..a]} : {@linkplain #isEmpty empty} ranges; also valid
* <li>{@code (a..a)} : <b>invalid</b>; an exception will be thrown
* </ul>
*
* <h3>Warnings</h3>
*
* <ul>
* <li>Use immutable value types only, if at all possible. If you must use a
* mutable type, <b>do not</b> allow the endpoint instances to mutate after the
* range is created!
* <li>Your value type's comparison method should be {@linkplain Comparable
* consistent with equals} if at all possible. Otherwise, be aware that concepts
* used throughout this documentation such as "equal", "same", "unique" and so
* on actually refer to whether {@link Comparable#compareTo compareTo} returns
* zero, not whether {@link Object#equals equals} returns {@code true}.
* <li>A class which implements {@code Comparable<UnrelatedType>} is very
* broken, and will cause undefined horrible things to happen in {@code Range}.
* For now, the Range API does not prevent its use, because this would also rule
* out all ungenerified (pre-JDK1.5) data types. <b>This may change in the
* future.</b>
* </ul>
*
* <h3>Other notes</h3>
*
* <ul>
* <li>Instances of this type are obtained using the static factory methods in
* this class.
* <li>Ranges are <i>convex</i>: whenever two values are contained, all values
* in between them must also be contained. More formally, for any
* {@code c1 <= c2 <= c3} of type {@code C}, {@code
* r.contains(c1) && r.contains(c3)} implies {@code r.contains(c2)}). This
* means that a {@code
* Range<Integer>} can never be used to represent, say, "all <i>prime</i>
* numbers from 1 to 100."
* <li>When evaluated as a {@link Predicate}, a range yields the same result as
* invoking {@link #contains}.
* <li>Terminology note: a range {@code a} is said to be the <i>maximal</i>
* range having property <i>P</i> if, for all ranges {@code b} also having
* property <i>P</i>, {@code a.encloses(b)}. Likewise, {@code a} is
* <i>minimal</i> when {@code b.encloses(a)} for all {@code b} having property
* <i>P</i>. See, for example, the definition of {@link #intersection
* intersection}.
* </ul>
*
* <h3>Further reading</h3>
*
* <p>
* See the Guava User Guide article on <a href=
* "http://code.google.com/p/guava-libraries/wiki/RangesExplained">{@code Range}</a>.
*
* @author Kevin Bourrillion
* @author Gregory Kick
* @since 10.0
*/
@GwtCompatible
@SuppressWarnings("rawtypes")
public final class Range<C extends Comparable> implements Predicate<C>, Serializable {
private static final Function<Range, Cut> LOWER_BOUND_FN = new Function<Range, Cut>() {
@Override
public Cut apply(Range range) {
return range.lowerBound;
}
};
@SuppressWarnings("unchecked")
static <C extends Comparable<?>> Function<Range<C>, Cut<C>> lowerBoundFn() {
return (Function) LOWER_BOUND_FN;
}
private static final Function<Range, Cut> UPPER_BOUND_FN = new Function<Range, Cut>() {
@Override
public Cut apply(Range range) {
return range.upperBound;
}
};
@SuppressWarnings("unchecked")
static <C extends Comparable<?>> Function<Range<C>, Cut<C>> upperBoundFn() {
return (Function) UPPER_BOUND_FN;
}
static final Ordering<Range<?>> RANGE_LEX_ORDERING = new Ordering<Range<?>>() {
@Override
public int compare(Range<?> left, Range<?> right) {
return ComparisonChain.start().compare(left.lowerBound, right.lowerBound)
.compare(left.upperBound, right.upperBound).result();
}
};
static <C extends Comparable<?>> Range<C> create(Cut<C> lowerBound, Cut<C> upperBound) {
return new Range<C>(lowerBound, upperBound);
}
/**
* Returns a range that contains all values strictly greater than {@code
* lower} and strictly less than {@code upper}.
*
* @throws IllegalArgumentException if {@code lower} is greater than <i>or equal
* to</i> {@code upper}
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> open(C lower, C upper) {
return create(Cut.aboveValue(lower), Cut.belowValue(upper));
}
/**
* Returns a range that contains all values greater than or equal to
* {@code lower} and less than or equal to {@code upper}.
*
* @throws IllegalArgumentException if {@code lower} is greater than {@code
* upper}
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> closed(C lower, C upper) {
return create(Cut.belowValue(lower), Cut.aboveValue(upper));
}
/**
* Returns a range that contains all values greater than or equal to
* {@code lower} and strictly less than {@code upper}.
*
* @throws IllegalArgumentException if {@code lower} is greater than {@code
* upper}
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> closedOpen(C lower, C upper) {
return create(Cut.belowValue(lower), Cut.belowValue(upper));
}
/**
* Returns a range that contains all values strictly greater than {@code
* lower} and less than or equal to {@code upper}.
*
* @throws IllegalArgumentException if {@code lower} is greater than {@code
* upper}
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> openClosed(C lower, C upper) {
return create(Cut.aboveValue(lower), Cut.aboveValue(upper));
}
/**
* Returns a range that contains any value from {@code lower} to {@code
* upper}, where each endpoint may be either inclusive (closed) or exclusive
* (open).
*
* @throws IllegalArgumentException if {@code lower} is greater than {@code
* upper}
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> range(C lower, BoundType lowerType, C upper, BoundType upperType) {
checkNotNull(lowerType);
checkNotNull(upperType);
Cut<C> lowerBound = (lowerType == BoundType.OPEN) ? Cut.aboveValue(lower) : Cut.belowValue(lower);
Cut<C> upperBound = (upperType == BoundType.OPEN) ? Cut.belowValue(upper) : Cut.aboveValue(upper);
return create(lowerBound, upperBound);
}
/**
* Returns a range that contains all values strictly less than {@code
* endpoint}.
*
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> lessThan(C endpoint) {
return create(Cut.<C>belowAll(), Cut.belowValue(endpoint));
}
/**
* Returns a range that contains all values less than or equal to
* {@code endpoint}.
*
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> atMost(C endpoint) {
return create(Cut.<C>belowAll(), Cut.aboveValue(endpoint));
}
/**
* Returns a range with no lower bound up to the given endpoint, which may be
* either inclusive (closed) or exclusive (open).
*
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> upTo(C endpoint, BoundType boundType) {
switch (boundType) {
case OPEN:
return lessThan(endpoint);
case CLOSED:
return atMost(endpoint);
default:
throw new AssertionError();
}
}
/**
* Returns a range that contains all values strictly greater than {@code
* endpoint}.
*
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> greaterThan(C endpoint) {
return create(Cut.aboveValue(endpoint), Cut.<C>aboveAll());
}
/**
* Returns a range that contains all values greater than or equal to
* {@code endpoint}.
*
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> atLeast(C endpoint) {
return create(Cut.belowValue(endpoint), Cut.<C>aboveAll());
}
/**
* Returns a range from the given endpoint, which may be either inclusive
* (closed) or exclusive (open), with no upper bound.
*
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> downTo(C endpoint, BoundType boundType) {
switch (boundType) {
case OPEN:
return greaterThan(endpoint);
case CLOSED:
return atLeast(endpoint);
default:
throw new AssertionError();
}
}
private static final Range<Comparable> ALL = new Range<Comparable>(Cut.belowAll(), Cut.aboveAll());
/**
* Returns a range that contains every value of type {@code C}.
*
* @since 14.0
*/
@SuppressWarnings("unchecked")
public static <C extends Comparable<?>> Range<C> all() {
return (Range) ALL;
}
/**
* Returns a range that {@linkplain Range#contains(Comparable) contains} only
* the given value. The returned range is {@linkplain BoundType#CLOSED closed}
* on both ends.
*
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> singleton(C value) {
return closed(value, value);
}
/**
* Returns the minimal range that {@linkplain Range#contains(Comparable)
* contains} all of the given values. The returned range is
* {@linkplain BoundType#CLOSED closed} on both ends.
*
* @throws ClassCastException if the parameters are not <i>mutually
* comparable</i>
* @throws NoSuchElementException if {@code values} is empty
* @throws NullPointerException if any of {@code values} is null
* @since 14.0
*/
public static <C extends Comparable<?>> Range<C> encloseAll(Iterable<C> values) {
checkNotNull(values);
if (values instanceof ContiguousSet) {
return ((ContiguousSet<C>) values).range();
}
Iterator<C> valueIterator = values.iterator();
C min = checkNotNull(valueIterator.next());
C max = min;
while (valueIterator.hasNext()) {
C value = checkNotNull(valueIterator.next());
min = Ordering.natural().min(min, value);
max = Ordering.natural().max(max, value);
}
return closed(min, max);
}
final Cut<C> lowerBound;
final Cut<C> upperBound;
private Range(Cut<C> lowerBound, Cut<C> upperBound) {
if (lowerBound.compareTo(upperBound) > 0 || lowerBound == Cut.<C>aboveAll()
|| upperBound == Cut.<C>belowAll()) {
throw new IllegalArgumentException("Invalid range: " + toString(lowerBound, upperBound));
}
this.lowerBound = checkNotNull(lowerBound);
this.upperBound = checkNotNull(upperBound);
}
/**
* Returns {@code true} if this range has a lower endpoint.
*/
public boolean hasLowerBound() {
return lowerBound != Cut.belowAll();
}
/**
* Returns the lower endpoint of this range.
*
* @throws IllegalStateException if this range is unbounded below (that is,
* {@link #hasLowerBound()} returns {@code false})
*/
public C lowerEndpoint() {
return lowerBound.endpoint();
}
/**
* Returns the type of this range's lower bound: {@link BoundType#CLOSED} if the
* range includes its lower endpoint, {@link BoundType#OPEN} if it does not.
*
* @throws IllegalStateException if this range is unbounded below (that is,
* {@link #hasLowerBound()} returns {@code false})
*/
public BoundType lowerBoundType() {
return lowerBound.typeAsLowerBound();
}
/**
* Returns {@code true} if this range has an upper endpoint.
*/
public boolean hasUpperBound() {
return upperBound != Cut.aboveAll();
}
/**
* Returns the upper endpoint of this range.
*
* @throws IllegalStateException if this range is unbounded above (that is,
* {@link #hasUpperBound()} returns {@code false})
*/
public C upperEndpoint() {
return upperBound.endpoint();
}
/**
* Returns the type of this range's upper bound: {@link BoundType#CLOSED} if the
* range includes its upper endpoint, {@link BoundType#OPEN} if it does not.
*
* @throws IllegalStateException if this range is unbounded above (that is,
* {@link #hasUpperBound()} returns {@code false})
*/
public BoundType upperBoundType() {
return upperBound.typeAsUpperBound();
}
/**
* Returns {@code true} if this range is of the form {@code [v..v)} or
* {@code (v..v]}. (This does not encompass ranges of the form {@code (v..v)},
* because such ranges are <i>invalid</i> and can't be constructed at all.)
*
* <p>
* Note that certain discrete ranges such as the integer range {@code (3..4)}
* are <b>not</b> considered empty, even though they contain no actual values.
* In these cases, it may be helpful to preprocess ranges with
* {@link #canonical(DiscreteDomain)}.
*/
public boolean isEmpty() {
return lowerBound.equals(upperBound);
}
/**
* Returns {@code true} if {@code value} is within the bounds of this range. For
* example, on the range {@code [0..2)}, {@code contains(1)} returns
* {@code true}, while {@code contains(2)} returns {@code false}.
*/
public boolean contains(C value) {
checkNotNull(value);
// let this throw CCE if there is some trickery going on
return lowerBound.isLessThan(value) && !upperBound.isLessThan(value);
}
/**
* @deprecated Provided only to satisfy the {@link Predicate} interface; use
* {@link #contains} instead.
*/
@Deprecated
@Override
public boolean apply(C input) {
return contains(input);
}
/**
* Returns {@code true} if every element in {@code values} is
* {@linkplain #contains contained} in this range.
*/
public boolean containsAll(Iterable<? extends C> values) {
if (Iterables.isEmpty(values)) {
return true;
}
// this optimizes testing equality of two range-backed sets
if (values instanceof SortedSet) {
SortedSet<? extends C> set = cast(values);
Comparator<?> comparator = set.comparator();
if (Ordering.natural().equals(comparator) || comparator == null) {
return contains(set.first()) && contains(set.last());
}
}
for (C value : values) {
if (!contains(value)) {
return false;
}
}
return true;
}
/**
* Returns {@code true} if the bounds of {@code other} do not extend outside the
* bounds of this range. Examples:
*
* <ul>
* <li>{@code [3..6]} encloses {@code [4..5]}
* <li>{@code (3..6)} encloses {@code (3..6)}
* <li>{@code [3..6]} encloses {@code [4..4)} (even though the latter is empty)
* <li>{@code (3..6]} does not enclose {@code [3..6]}
* <li>{@code [4..5]} does not enclose {@code (3..6)} (even though it contains
* every value contained by the latter range)
* <li>{@code [3..6]} does not enclose {@code (1..1]} (even though it contains
* every value contained by the latter range)
* </ul>
*
* <p>
* Note that if {@code a.encloses(b)}, then {@code b.contains(v)} implies
* {@code a.contains(v)}, but as the last two examples illustrate, the converse
* is not always true.
*
* <p>
* Being reflexive, antisymmetric and transitive, the {@code encloses} relation
* defines a <i>partial order</i> over ranges. There exists a unique
* {@linkplain Range#all maximal} range according to this relation, and also
* numerous {@linkplain #isEmpty minimal} ranges. Enclosure also implies
* {@linkplain #isConnected connectedness}.
*/
public boolean encloses(Range<C> other) {
return lowerBound.compareTo(other.lowerBound) <= 0 && upperBound.compareTo(other.upperBound) >= 0;
}
/**
* Returns {@code true} if there exists a (possibly empty) range which is
* {@linkplain #encloses enclosed} by both this range and {@code other}.
*
* <p>
* For example,
* <ul>
* <li>{@code [2, 4)} and {@code [5, 7)} are not connected
* <li>{@code [2, 4)} and {@code [3, 5)} are connected, because both enclose
* {@code [3, 4)}
* <li>{@code [2, 4)} and {@code [4, 6)} are connected, because both enclose the
* empty range {@code [4, 4)}
* </ul>
*
* <p>
* Note that this range and {@code other} have a well-defined {@linkplain #span
* union} and {@linkplain #intersection intersection} (as a single,
* possibly-empty range) if and only if this method returns {@code true}.
*
* <p>
* The connectedness relation is both reflexive and symmetric, but does not form
* an {@linkplain Equivalence equivalence relation} as it is not transitive.
*
* <p>
* Note that certain discrete ranges are not considered connected, even though
* there are no elements "between them." For example, {@code [3, 5]} is not
* considered connected to {@code
* [6, 10]}. In these cases, it may be desirable for both input ranges to be
* preprocessed with {@link #canonical(DiscreteDomain)} before testing for
* connectedness.
*/
public boolean isConnected(Range<C> other) {
return lowerBound.compareTo(other.upperBound) <= 0 && other.lowerBound.compareTo(upperBound) <= 0;
}
/**
* Returns the maximal range {@linkplain #encloses enclosed} by both this range
* and {@code
* connectedRange}, if such a range exists.
*
* <p>
* For example, the intersection of {@code [1..5]} and {@code (3..7)} is
* {@code (3..5]}. The resulting range may be empty; for example, {@code [1..5)}
* intersected with {@code [5..7)} yields the empty range {@code [5..5)}.
*
* <p>
* The intersection exists if and only if the two ranges are
* {@linkplain #isConnected connected}.
*
* <p>
* The intersection operation is commutative, associative and idempotent, and
* its identity element is {@link Range#all}).
*
* @throws IllegalArgumentException if {@code isConnected(connectedRange)} is
* {@code false}
*/
public Range<C> intersection(Range<C> connectedRange) {
int lowerCmp = lowerBound.compareTo(connectedRange.lowerBound);
int upperCmp = upperBound.compareTo(connectedRange.upperBound);
if (lowerCmp >= 0 && upperCmp <= 0) {
return this;
} else if (lowerCmp <= 0 && upperCmp >= 0) {
return connectedRange;
} else {
Cut<C> newLower = (lowerCmp >= 0) ? lowerBound : connectedRange.lowerBound;
Cut<C> newUpper = (upperCmp <= 0) ? upperBound : connectedRange.upperBound;
return create(newLower, newUpper);
}
}
/**
* Returns the minimal range that {@linkplain #encloses encloses} both this
* range and {@code
* other}. For example, the span of {@code [1..3]} and {@code (5..7)} is
* {@code [1..7)}.
*
* <p>
* <i>If</i> the input ranges are {@linkplain #isConnected connected}, the
* returned range can also be called their <i>union</i>. If they are not, note
* that the span might contain values that are not contained in either input
* range.
*
* <p>
* Like {@link #intersection(Range) intersection}, this operation is
* commutative, associative and idempotent. Unlike it, it is always well-defined
* for any two input ranges.
*/
public Range<C> span(Range<C> other) {
int lowerCmp = lowerBound.compareTo(other.lowerBound);
int upperCmp = upperBound.compareTo(other.upperBound);
if (lowerCmp <= 0 && upperCmp >= 0) {
return this;
} else if (lowerCmp >= 0 && upperCmp <= 0) {
return other;
} else {
Cut<C> newLower = (lowerCmp <= 0) ? lowerBound : other.lowerBound;
Cut<C> newUpper = (upperCmp >= 0) ? upperBound : other.upperBound;
return create(newLower, newUpper);
}
}
/**
* Returns the canonical form of this range in the given domain. The canonical
* form has the following properties:
*
* <ul>
* <li>equivalence: {@code a.canonical().contains(v) == a.contains(v)} for all
* {@code v} (in other words,
* {@code ContiguousSet.create(a.canonical(domain), domain).equals(
* ContiguousSet.create(a, domain))}
* <li>uniqueness: unless {@code a.isEmpty()},
* {@code ContiguousSet.create(a, domain).equals(ContiguousSet.create(b, domain))}
* implies {@code a.canonical(domain).equals(b.canonical(domain))}
* <li>idempotence:
* {@code a.canonical(domain).canonical(domain).equals(a.canonical(domain))}
* </ul>
*
* <p>
* Furthermore, this method guarantees that the range returned will be one of
* the following canonical forms:
*
* <ul>
* <li>[start..end)
* <li>[start..+∞)
* <li>(-∞..end) (only if type {@code C} is unbounded below)
* <li>(-∞..+∞) (only if type {@code C} is unbounded below)
* </ul>
*/
public Range<C> canonical(DiscreteDomain<C> domain) {
checkNotNull(domain);
Cut<C> lower = lowerBound.canonical(domain);
Cut<C> upper = upperBound.canonical(domain);
return (lower == lowerBound && upper == upperBound) ? this : create(lower, upper);
}
/**
* Returns {@code true} if {@code object} is a range having the same endpoints
* and bound types as this range. Note that discrete ranges such as
* {@code (1..4)} and {@code [2..3]} are <b>not</b> equal to one another,
* despite the fact that they each contain precisely the same set of values.
* Similarly, empty ranges are not equal unless they have exactly the same
* representation, so {@code [3..3)}, {@code (3..3]}, {@code (4..4]} are all
* unequal.
*/
@Override
public boolean equals(@Nullable Object object) {
if (object instanceof Range) {
Range<?> other = (Range<?>) object;
return lowerBound.equals(other.lowerBound) && upperBound.equals(other.upperBound);
}
return false;
}
/** Returns a hash code for this range. */
@Override
public int hashCode() {
return lowerBound.hashCode() * 31 + upperBound.hashCode();
}
/**
* Returns a string representation of this range, such as {@code "[3..5)"}
* (other examples are listed in the class documentation).
*/
@Override
public String toString() {
return toString(lowerBound, upperBound);
}
private static String toString(Cut<?> lowerBound, Cut<?> upperBound) {
StringBuilder sb = new StringBuilder(16);
lowerBound.describeAsLowerBound(sb);
sb.append('\u2025');
upperBound.describeAsUpperBound(sb);
return sb.toString();
}
/**
* Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
*/
private static <T> SortedSet<T> cast(Iterable<T> iterable) {
return (SortedSet<T>) iterable;
}
Object readResolve() {
if (this.equals(ALL)) {
return all();
} else {
return this;
}
}
@SuppressWarnings("unchecked") // this method may throw CCE
static int compareOrThrow(Comparable left, Comparable right) {
return left.compareTo(right);
}
private static final long serialVersionUID = 0;
}