872 lines
31 KiB
Java
872 lines
31 KiB
Java
|
/*
|
||
|
* Copyright (C) 2007 The Guava Authors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package com.google.common.collect;
|
||
|
|
||
|
import static com.google.common.base.Preconditions.checkNotNull;
|
||
|
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
|
||
|
|
||
|
import java.util.ArrayList;
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Collection;
|
||
|
import java.util.Collections;
|
||
|
import java.util.Comparator;
|
||
|
import java.util.HashSet;
|
||
|
import java.util.Iterator;
|
||
|
import java.util.List;
|
||
|
import java.util.Map;
|
||
|
import java.util.NoSuchElementException;
|
||
|
import java.util.TreeSet;
|
||
|
|
||
|
import javax.annotation.Nullable;
|
||
|
|
||
|
import com.google.common.annotations.GwtCompatible;
|
||
|
import com.google.common.annotations.VisibleForTesting;
|
||
|
import com.google.common.base.Function;
|
||
|
|
||
|
/**
|
||
|
* A comparator, with additional methods to support common operations. This is
|
||
|
* an "enriched" version of {@code Comparator}, in the same sense that
|
||
|
* {@link FluentIterable} is an enriched {@link Iterable}.
|
||
|
*
|
||
|
* <p>
|
||
|
* The common ways to get an instance of {@code Ordering} are:
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li>Subclass it and implement {@link #compare} instead of implementing
|
||
|
* {@link Comparator} directly
|
||
|
* <li>Pass a <i>pre-existing</i> {@link Comparator} instance to
|
||
|
* {@link #from(Comparator)}
|
||
|
* <li>Use the natural ordering, {@link Ordering#natural}
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>
|
||
|
* Then you can use the <i>chaining</i> methods to get an altered version of
|
||
|
* that {@code Ordering}, including:
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li>{@link #reverse}
|
||
|
* <li>{@link #compound(Comparator)}
|
||
|
* <li>{@link #onResultOf(Function)}
|
||
|
* <li>{@link #nullsFirst} / {@link #nullsLast}
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>
|
||
|
* Finally, use the resulting {@code Ordering} anywhere a {@link Comparator} is
|
||
|
* required, or use any of its special operations, such as:
|
||
|
* </p>
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li>{@link #immutableSortedCopy}
|
||
|
* <li>{@link #isOrdered} / {@link #isStrictlyOrdered}
|
||
|
* <li>{@link #min} / {@link #max}
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>
|
||
|
* Except as noted, the orderings returned by the factory methods of this class
|
||
|
* are serializable if and only if the provided instances that back them are.
|
||
|
* For example, if {@code ordering} and {@code function} can themselves be
|
||
|
* serialized, then {@code ordering.onResultOf(function)} can as well.
|
||
|
*
|
||
|
* <p>
|
||
|
* See the Guava User Guide article on
|
||
|
* <a href= "http://code.google.com/p/guava-libraries/wiki/OrderingExplained">
|
||
|
* {@code Ordering}</a>.
|
||
|
*
|
||
|
* @author Jesse Wilson
|
||
|
* @author Kevin Bourrillion
|
||
|
* @since 2.0 (imported from Google Collections Library)
|
||
|
*/
|
||
|
@GwtCompatible
|
||
|
public abstract class Ordering<T> implements Comparator<T> {
|
||
|
// Natural order
|
||
|
|
||
|
/**
|
||
|
* Returns a serializable ordering that uses the natural order of the values.
|
||
|
* The ordering throws a {@link NullPointerException} when passed a null
|
||
|
* parameter.
|
||
|
*
|
||
|
* <p>
|
||
|
* The type specification is {@code <C extends Comparable>}, instead of the
|
||
|
* technically correct {@code <C extends Comparable<? super C>>}, to support
|
||
|
* legacy types from before Java 5.
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
@SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
|
||
|
public static <C extends Comparable> Ordering<C> natural() {
|
||
|
return (Ordering<C>) NaturalOrdering.INSTANCE;
|
||
|
}
|
||
|
|
||
|
// Static factories
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering based on an <i>existing</i> comparator instance. Note
|
||
|
* that it is unnecessary to create a <i>new</i> anonymous inner class
|
||
|
* implementing {@code Comparator} just to pass it in here. Instead, simply
|
||
|
* subclass {@code Ordering} and implement its {@code compare} method directly.
|
||
|
*
|
||
|
* @param comparator the comparator that defines the order
|
||
|
* @return comparator itself if it is already an {@code Ordering}; otherwise an
|
||
|
* ordering that wraps that comparator
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public static <T> Ordering<T> from(Comparator<T> comparator) {
|
||
|
return (comparator instanceof Ordering) ? (Ordering<T>) comparator : new ComparatorOrdering<T>(comparator);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Simply returns its argument.
|
||
|
*
|
||
|
* @deprecated no need to use this
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
@Deprecated
|
||
|
public static <T> Ordering<T> from(Ordering<T> ordering) {
|
||
|
return checkNotNull(ordering);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering that compares objects according to the order in which
|
||
|
* they appear in the given list. Only objects present in the list (according to
|
||
|
* {@link Object#equals}) may be compared. This comparator imposes a "partial
|
||
|
* ordering" over the type {@code T}. Subsequent changes to the
|
||
|
* {@code valuesInOrder} list will have no effect on the returned comparator.
|
||
|
* Null values in the list are not supported.
|
||
|
*
|
||
|
* <p>
|
||
|
* The returned comparator throws an {@link ClassCastException} when it receives
|
||
|
* an input parameter that isn't among the provided values.
|
||
|
*
|
||
|
* <p>
|
||
|
* The generated comparator is serializable if all the provided values are
|
||
|
* serializable.
|
||
|
*
|
||
|
* @param valuesInOrder the values that the returned comparator will be able to
|
||
|
* compare, in the order the comparator should induce
|
||
|
* @return the comparator described above
|
||
|
* @throws NullPointerException if any of the provided values is null
|
||
|
* @throws IllegalArgumentException if {@code valuesInOrder} contains any
|
||
|
* duplicate values (according to
|
||
|
* {@link Object#equals})
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
|
||
|
return new ExplicitOrdering<T>(valuesInOrder);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering that compares objects according to the order in which
|
||
|
* they are given to this method. Only objects present in the argument list
|
||
|
* (according to {@link Object#equals}) may be compared. This comparator imposes
|
||
|
* a "partial ordering" over the type {@code T}. Null values in the argument
|
||
|
* list are not supported.
|
||
|
*
|
||
|
* <p>
|
||
|
* The returned comparator throws a {@link ClassCastException} when it receives
|
||
|
* an input parameter that isn't among the provided values.
|
||
|
*
|
||
|
* <p>
|
||
|
* The generated comparator is serializable if all the provided values are
|
||
|
* serializable.
|
||
|
*
|
||
|
* @param leastValue the value which the returned comparator should
|
||
|
* consider the "least" of all values
|
||
|
* @param remainingValuesInOrder the rest of the values that the returned
|
||
|
* comparator will be able to compare, in the
|
||
|
* order the comparator should follow
|
||
|
* @return the comparator described above
|
||
|
* @throws NullPointerException if any of the provided values is null
|
||
|
* @throws IllegalArgumentException if any duplicate values (according to
|
||
|
* {@link Object#equals(Object)}) are present
|
||
|
* among the method arguments
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public static <T> Ordering<T> explicit(T leastValue, T... remainingValuesInOrder) {
|
||
|
return explicit(Lists.asList(leastValue, remainingValuesInOrder));
|
||
|
}
|
||
|
|
||
|
// Ordering<Object> singletons
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering which treats all values as equal, indicating "no
|
||
|
* ordering." Passing this ordering to any <i>stable</i> sort algorithm results
|
||
|
* in no change to the order of elements. Note especially that
|
||
|
* {@link #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the
|
||
|
* returned instance these are implemented by simply copying the source list.
|
||
|
*
|
||
|
* <p>
|
||
|
* Example:
|
||
|
*
|
||
|
* <pre>
|
||
|
* {@code
|
||
|
*
|
||
|
* Ordering.allEqual().nullsLast().sortedCopy(
|
||
|
* asList(t, null, e, s, null, t, null))}
|
||
|
* </pre>
|
||
|
*
|
||
|
* <p>
|
||
|
* Assuming {@code t}, {@code e} and {@code s} are non-null, this returns
|
||
|
* {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison
|
||
|
* order of those three values (which might not even implement
|
||
|
* {@link Comparable} at all).
|
||
|
*
|
||
|
* <p>
|
||
|
* <b>Warning:</b> by definition, this comparator is not <i>consistent with
|
||
|
* equals</i> (as defined {@linkplain Comparator here}). Avoid its use in APIs,
|
||
|
* such as {@link TreeSet#TreeSet(Comparator)}, where such consistency is
|
||
|
* expected.
|
||
|
*
|
||
|
* <p>
|
||
|
* The returned comparator is serializable.
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
@SuppressWarnings("unchecked")
|
||
|
public static Ordering<Object> allEqual() {
|
||
|
return AllEqualOrdering.INSTANCE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering that compares objects by the natural ordering of their
|
||
|
* string representations as returned by {@code toString()}. It does not support
|
||
|
* null values.
|
||
|
*
|
||
|
* <p>
|
||
|
* The comparator is serializable.
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public static Ordering<Object> usingToString() {
|
||
|
return UsingToStringOrdering.INSTANCE;
|
||
|
}
|
||
|
|
||
|
// Constructor
|
||
|
|
||
|
/**
|
||
|
* Constructs a new instance of this class (only invokable by the subclass
|
||
|
* constructor, typically implicit).
|
||
|
*/
|
||
|
protected Ordering() {
|
||
|
}
|
||
|
|
||
|
// Instance-based factories (and any static equivalents)
|
||
|
|
||
|
/**
|
||
|
* Returns the reverse of this ordering; the {@code Ordering} equivalent to
|
||
|
* {@link Collections#reverseOrder(Comparator)}.
|
||
|
*/
|
||
|
// type parameter <S> lets us avoid the extra <String> in statements like:
|
||
|
// Ordering<String> o = Ordering.<String>natural().reverse();
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public <S extends T> Ordering<S> reverse() {
|
||
|
return new ReverseOrdering<S>(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering that treats {@code null} as less than all other values
|
||
|
* and uses {@code this} to compare non-null values.
|
||
|
*/
|
||
|
// type parameter <S> lets us avoid the extra <String> in statements like:
|
||
|
// Ordering<String> o = Ordering.<String>natural().nullsFirst();
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public <S extends T> Ordering<S> nullsFirst() {
|
||
|
return new NullsFirstOrdering<S>(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering that treats {@code null} as greater than all other values
|
||
|
* and uses this ordering to compare non-null values.
|
||
|
*/
|
||
|
// type parameter <S> lets us avoid the extra <String> in statements like:
|
||
|
// Ordering<String> o = Ordering.<String>natural().nullsLast();
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public <S extends T> Ordering<S> nullsLast() {
|
||
|
return new NullsLastOrdering<S>(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a new ordering on {@code F} which orders elements by first applying a
|
||
|
* function to them, then comparing those results using {@code this}. For
|
||
|
* example, to compare objects by their string forms, in a case-insensitive
|
||
|
* manner, use:
|
||
|
*
|
||
|
* <pre>
|
||
|
* {@code
|
||
|
*
|
||
|
* Ordering.from(String.CASE_INSENSITIVE_ORDER)
|
||
|
* .onResultOf(Functions.toStringFunction())}
|
||
|
* </pre>
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
|
||
|
return new ByFunctionOrdering<F, T>(function, this);
|
||
|
}
|
||
|
|
||
|
<T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() {
|
||
|
return onResultOf(Maps.<T2>keyFunction());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering which first uses the ordering {@code this}, but which in
|
||
|
* the event of a "tie", then delegates to {@code secondaryComparator}. For
|
||
|
* example, to sort a bug list first by status and second by priority, you might
|
||
|
* use {@code byStatus.compound(byPriority)}. For a compound ordering with three
|
||
|
* or more components, simply chain multiple calls to this method.
|
||
|
*
|
||
|
* <p>
|
||
|
* An ordering produced by this method, or a chain of calls to this method, is
|
||
|
* equivalent to one created using {@link Ordering#compound(Iterable)} on the
|
||
|
* same component comparators.
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public <U extends T> Ordering<U> compound(Comparator<? super U> secondaryComparator) {
|
||
|
return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an ordering which tries each given comparator in order until a
|
||
|
* non-zero result is found, returning that result, and returning zero only if
|
||
|
* all comparators return zero. The returned ordering is based on the state of
|
||
|
* the {@code comparators} iterable at the time it was provided to this method.
|
||
|
*
|
||
|
* <p>
|
||
|
* The returned ordering is equivalent to that produced using {@code
|
||
|
* Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
|
||
|
*
|
||
|
* <p>
|
||
|
* <b>Warning:</b> Supplying an argument with undefined iteration order, such as
|
||
|
* a {@link HashSet}, will produce non-deterministic results.
|
||
|
*
|
||
|
* @param comparators the comparators to try in order
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
public static <T> Ordering<T> compound(Iterable<? extends Comparator<? super T>> comparators) {
|
||
|
return new CompoundOrdering<T>(comparators);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a new ordering which sorts iterables by comparing corresponding
|
||
|
* elements pairwise until a nonzero result is found; imposes "dictionary
|
||
|
* order". If the end of one iterable is reached, but not the other, the shorter
|
||
|
* iterable is considered to be less than the longer one. For example, a
|
||
|
* lexicographical natural ordering over integers considers {@code
|
||
|
* [] < [1] < [1, 1] < [1, 2] < [2]}.
|
||
|
*
|
||
|
* <p>
|
||
|
* Note that {@code ordering.lexicographical().reverse()} is not equivalent to
|
||
|
* {@code ordering.reverse().lexicographical()} (consider how each would order
|
||
|
* {@code [1]} and {@code [1, 1]}).
|
||
|
*
|
||
|
* @since 2.0
|
||
|
*/
|
||
|
@GwtCompatible(serializable = true)
|
||
|
// type parameter <S> lets us avoid the extra <String> in statements like:
|
||
|
// Ordering<Iterable<String>> o =
|
||
|
// Ordering.<String>natural().lexicographical();
|
||
|
public <S extends T> Ordering<Iterable<S>> lexicographical() {
|
||
|
/*
|
||
|
* Note that technically the returned ordering should be capable of handling not
|
||
|
* just {@code Iterable<S>} instances, but also any {@code Iterable<? extends
|
||
|
* S>}. However, the need for this comes up so rarely that it doesn't justify
|
||
|
* making everyone else deal with the very ugly wildcard.
|
||
|
*/
|
||
|
return new LexicographicalOrdering<S>(this);
|
||
|
}
|
||
|
|
||
|
// Regular instance methods
|
||
|
|
||
|
// Override to add @Nullable
|
||
|
@Override
|
||
|
public abstract int compare(@Nullable T left, @Nullable T right);
|
||
|
|
||
|
/**
|
||
|
* Returns the least of the specified values according to this ordering. If
|
||
|
* there are multiple least values, the first of those is returned. The iterator
|
||
|
* will be left exhausted: its {@code hasNext()} method will return
|
||
|
* {@code false}.
|
||
|
*
|
||
|
* @param iterator the iterator whose minimum element is to be determined
|
||
|
* @throws NoSuchElementException if {@code iterator} is empty
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*
|
||
|
* @since 11.0
|
||
|
*/
|
||
|
public <E extends T> E min(Iterator<E> iterator) {
|
||
|
// let this throw NoSuchElementException as necessary
|
||
|
E minSoFar = iterator.next();
|
||
|
|
||
|
while (iterator.hasNext()) {
|
||
|
minSoFar = min(minSoFar, iterator.next());
|
||
|
}
|
||
|
|
||
|
return minSoFar;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the least of the specified values according to this ordering. If
|
||
|
* there are multiple least values, the first of those is returned.
|
||
|
*
|
||
|
* @param iterable the iterable whose minimum element is to be determined
|
||
|
* @throws NoSuchElementException if {@code iterable} is empty
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*/
|
||
|
public <E extends T> E min(Iterable<E> iterable) {
|
||
|
return min(iterable.iterator());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the lesser of the two values according to this ordering. If the
|
||
|
* values compare as 0, the first is returned.
|
||
|
*
|
||
|
* <p>
|
||
|
* <b>Implementation note:</b> this method is invoked by the default
|
||
|
* implementations of the other {@code min} overloads, so overriding it will
|
||
|
* affect their behavior.
|
||
|
*
|
||
|
* @param a value to compare, returned if less than or equal to b.
|
||
|
* @param b value to compare.
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*/
|
||
|
public <E extends T> E min(@Nullable E a, @Nullable E b) {
|
||
|
return (compare(a, b) <= 0) ? a : b;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the least of the specified values according to this ordering. If
|
||
|
* there are multiple least values, the first of those is returned.
|
||
|
*
|
||
|
* @param a value to compare, returned if less than or equal to the rest.
|
||
|
* @param b value to compare
|
||
|
* @param c value to compare
|
||
|
* @param rest values to compare
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*/
|
||
|
public <E extends T> E min(@Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
|
||
|
E minSoFar = min(min(a, b), c);
|
||
|
|
||
|
for (E r : rest) {
|
||
|
minSoFar = min(minSoFar, r);
|
||
|
}
|
||
|
|
||
|
return minSoFar;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the greatest of the specified values according to this ordering. If
|
||
|
* there are multiple greatest values, the first of those is returned. The
|
||
|
* iterator will be left exhausted: its {@code hasNext()} method will return
|
||
|
* {@code false}.
|
||
|
*
|
||
|
* @param iterator the iterator whose maximum element is to be determined
|
||
|
* @throws NoSuchElementException if {@code iterator} is empty
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*
|
||
|
* @since 11.0
|
||
|
*/
|
||
|
public <E extends T> E max(Iterator<E> iterator) {
|
||
|
// let this throw NoSuchElementException as necessary
|
||
|
E maxSoFar = iterator.next();
|
||
|
|
||
|
while (iterator.hasNext()) {
|
||
|
maxSoFar = max(maxSoFar, iterator.next());
|
||
|
}
|
||
|
|
||
|
return maxSoFar;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the greatest of the specified values according to this ordering. If
|
||
|
* there are multiple greatest values, the first of those is returned.
|
||
|
*
|
||
|
* @param iterable the iterable whose maximum element is to be determined
|
||
|
* @throws NoSuchElementException if {@code iterable} is empty
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*/
|
||
|
public <E extends T> E max(Iterable<E> iterable) {
|
||
|
return max(iterable.iterator());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the greater of the two values according to this ordering. If the
|
||
|
* values compare as 0, the first is returned.
|
||
|
*
|
||
|
* <p>
|
||
|
* <b>Implementation note:</b> this method is invoked by the default
|
||
|
* implementations of the other {@code max} overloads, so overriding it will
|
||
|
* affect their behavior.
|
||
|
*
|
||
|
* @param a value to compare, returned if greater than or equal to b.
|
||
|
* @param b value to compare.
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*/
|
||
|
public <E extends T> E max(@Nullable E a, @Nullable E b) {
|
||
|
return (compare(a, b) >= 0) ? a : b;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the greatest of the specified values according to this ordering. If
|
||
|
* there are multiple greatest values, the first of those is returned.
|
||
|
*
|
||
|
* @param a value to compare, returned if greater than or equal to the rest.
|
||
|
* @param b value to compare
|
||
|
* @param c value to compare
|
||
|
* @param rest values to compare
|
||
|
* @throws ClassCastException if the parameters are not <i>mutually
|
||
|
* comparable</i> under this ordering.
|
||
|
*/
|
||
|
public <E extends T> E max(@Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
|
||
|
E maxSoFar = max(max(a, b), c);
|
||
|
|
||
|
for (E r : rest) {
|
||
|
maxSoFar = max(maxSoFar, r);
|
||
|
}
|
||
|
|
||
|
return maxSoFar;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the {@code k} least elements of the given iterable according to this
|
||
|
* ordering, in order from least to greatest. If there are fewer than {@code k}
|
||
|
* elements present, all will be included.
|
||
|
*
|
||
|
* <p>
|
||
|
* The implementation does not necessarily use a <i>stable</i> sorting
|
||
|
* algorithm; when multiple elements are equivalent, it is undefined which will
|
||
|
* come first.
|
||
|
*
|
||
|
* @return an immutable {@code RandomAccess} list of the {@code k} least
|
||
|
* elements in ascending order
|
||
|
* @throws IllegalArgumentException if {@code k} is negative
|
||
|
* @since 8.0
|
||
|
*/
|
||
|
public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
|
||
|
if (iterable instanceof Collection) {
|
||
|
Collection<E> collection = (Collection<E>) iterable;
|
||
|
if (collection.size() <= 2L * k) {
|
||
|
// In this case, just dumping the collection to an array and sorting is
|
||
|
// faster than using the implementation for Iterator, which is
|
||
|
// specialized for k much smaller than n.
|
||
|
|
||
|
@SuppressWarnings("unchecked") // c only contains E's and doesn't escape
|
||
|
E[] array = (E[]) collection.toArray();
|
||
|
Arrays.sort(array, this);
|
||
|
if (array.length > k) {
|
||
|
array = ObjectArrays.arraysCopyOf(array, k);
|
||
|
}
|
||
|
return Collections.unmodifiableList(Arrays.asList(array));
|
||
|
}
|
||
|
}
|
||
|
return leastOf(iterable.iterator(), k);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the {@code k} least elements from the given iterator according to
|
||
|
* this ordering, in order from least to greatest. If there are fewer than
|
||
|
* {@code k} elements present, all will be included.
|
||
|
*
|
||
|
* <p>
|
||
|
* The implementation does not necessarily use a <i>stable</i> sorting
|
||
|
* algorithm; when multiple elements are equivalent, it is undefined which will
|
||
|
* come first.
|
||
|
*
|
||
|
* @return an immutable {@code RandomAccess} list of the {@code k} least
|
||
|
* elements in ascending order
|
||
|
* @throws IllegalArgumentException if {@code k} is negative
|
||
|
* @since 14.0
|
||
|
*/
|
||
|
public <E extends T> List<E> leastOf(Iterator<E> elements, int k) {
|
||
|
checkNotNull(elements);
|
||
|
checkNonnegative(k, "k");
|
||
|
|
||
|
if (k == 0 || !elements.hasNext()) {
|
||
|
return ImmutableList.of();
|
||
|
} else if (k >= Integer.MAX_VALUE / 2) {
|
||
|
// k is really large; just do a straightforward sorted-copy-and-sublist
|
||
|
ArrayList<E> list = Lists.newArrayList(elements);
|
||
|
Collections.sort(list, this);
|
||
|
if (list.size() > k) {
|
||
|
list.subList(k, list.size()).clear();
|
||
|
}
|
||
|
list.trimToSize();
|
||
|
return Collections.unmodifiableList(list);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Our goal is an O(n) algorithm using only one pass and O(k) additional memory.
|
||
|
*
|
||
|
* We use the following algorithm: maintain a buffer of size 2*k. Every time the
|
||
|
* buffer gets full, find the median and partition around it, keeping only the
|
||
|
* lowest k elements. This requires n/k find-median-and-partition steps, each of
|
||
|
* which take O(k) time with a traditional quickselect.
|
||
|
*
|
||
|
* After sorting the output, the whole algorithm is O(n + k log k). It degrades
|
||
|
* gracefully for worst-case input (descending order), performs competitively or
|
||
|
* wins outright for randomly ordered input, and doesn't require the whole
|
||
|
* collection to fit into memory.
|
||
|
*/
|
||
|
int bufferCap = k * 2;
|
||
|
@SuppressWarnings("unchecked") // we'll only put E's in
|
||
|
E[] buffer = (E[]) new Object[bufferCap];
|
||
|
E threshold = elements.next();
|
||
|
buffer[0] = threshold;
|
||
|
int bufferSize = 1;
|
||
|
// threshold is the kth smallest element seen so far. Once bufferSize >= k,
|
||
|
// anything larger than threshold can be ignored immediately.
|
||
|
|
||
|
while (bufferSize < k && elements.hasNext()) {
|
||
|
E e = elements.next();
|
||
|
buffer[bufferSize++] = e;
|
||
|
threshold = max(threshold, e);
|
||
|
}
|
||
|
|
||
|
while (elements.hasNext()) {
|
||
|
E e = elements.next();
|
||
|
if (compare(e, threshold) >= 0) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
buffer[bufferSize++] = e;
|
||
|
if (bufferSize == bufferCap) {
|
||
|
// We apply the quickselect algorithm to partition about the median,
|
||
|
// and then ignore the last k elements.
|
||
|
int left = 0;
|
||
|
int right = bufferCap - 1;
|
||
|
|
||
|
int minThresholdPosition = 0;
|
||
|
// The leftmost position at which the greatest of the k lower elements
|
||
|
// -- the new value of threshold -- might be found.
|
||
|
|
||
|
while (left < right) {
|
||
|
int pivotIndex = (left + right + 1) >>> 1;
|
||
|
int pivotNewIndex = partition(buffer, left, right, pivotIndex);
|
||
|
if (pivotNewIndex > k) {
|
||
|
right = pivotNewIndex - 1;
|
||
|
} else if (pivotNewIndex < k) {
|
||
|
left = Math.max(pivotNewIndex, left + 1);
|
||
|
minThresholdPosition = pivotNewIndex;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
bufferSize = k;
|
||
|
|
||
|
threshold = buffer[minThresholdPosition];
|
||
|
for (int i = minThresholdPosition + 1; i < bufferSize; i++) {
|
||
|
threshold = max(threshold, buffer[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Arrays.sort(buffer, 0, bufferSize, this);
|
||
|
|
||
|
bufferSize = Math.min(bufferSize, k);
|
||
|
return Collections.unmodifiableList(Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize)));
|
||
|
// We can't use ImmutableList; we have to be null-friendly!
|
||
|
}
|
||
|
|
||
|
private <E extends T> int partition(E[] values, int left, int right, int pivotIndex) {
|
||
|
E pivotValue = values[pivotIndex];
|
||
|
|
||
|
values[pivotIndex] = values[right];
|
||
|
values[right] = pivotValue;
|
||
|
|
||
|
int storeIndex = left;
|
||
|
for (int i = left; i < right; i++) {
|
||
|
if (compare(values[i], pivotValue) < 0) {
|
||
|
ObjectArrays.swap(values, storeIndex, i);
|
||
|
storeIndex++;
|
||
|
}
|
||
|
}
|
||
|
ObjectArrays.swap(values, right, storeIndex);
|
||
|
return storeIndex;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the {@code k} greatest elements of the given iterable according to
|
||
|
* this ordering, in order from greatest to least. If there are fewer than
|
||
|
* {@code k} elements present, all will be included.
|
||
|
*
|
||
|
* <p>
|
||
|
* The implementation does not necessarily use a <i>stable</i> sorting
|
||
|
* algorithm; when multiple elements are equivalent, it is undefined which will
|
||
|
* come first.
|
||
|
*
|
||
|
* @return an immutable {@code RandomAccess} list of the {@code k} greatest
|
||
|
* elements in <i>descending order</i>
|
||
|
* @throws IllegalArgumentException if {@code k} is negative
|
||
|
* @since 8.0
|
||
|
*/
|
||
|
public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
|
||
|
// TODO(kevinb): see if delegation is hurting performance noticeably
|
||
|
// TODO(kevinb): if we change this implementation, add full unit tests.
|
||
|
return reverse().leastOf(iterable, k);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the {@code k} greatest elements from the given iterator according to
|
||
|
* this ordering, in order from greatest to least. If there are fewer than
|
||
|
* {@code k} elements present, all will be included.
|
||
|
*
|
||
|
* <p>
|
||
|
* The implementation does not necessarily use a <i>stable</i> sorting
|
||
|
* algorithm; when multiple elements are equivalent, it is undefined which will
|
||
|
* come first.
|
||
|
*
|
||
|
* @return an immutable {@code RandomAccess} list of the {@code k} greatest
|
||
|
* elements in <i>descending order</i>
|
||
|
* @throws IllegalArgumentException if {@code k} is negative
|
||
|
* @since 14.0
|
||
|
*/
|
||
|
public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
|
||
|
return reverse().leastOf(iterator, k);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a <b>mutable</b> list containing {@code elements} sorted by this
|
||
|
* ordering; use this only when the resulting list may need further
|
||
|
* modification, or may contain {@code null}. The input is not modified. The
|
||
|
* returned list is serializable and has random access.
|
||
|
*
|
||
|
* <p>
|
||
|
* Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
|
||
|
* elements that are duplicates according to the comparator. The sort performed
|
||
|
* is <i>stable</i>, meaning that such elements will appear in the returned list
|
||
|
* in the same order they appeared in {@code elements}.
|
||
|
*
|
||
|
* <p>
|
||
|
* <b>Performance note:</b> According to our benchmarking on Open JDK 7,
|
||
|
* {@link #immutableSortedCopy} generally performs better (in both time and
|
||
|
* space) than this method, and this method in turn generally performs better
|
||
|
* than copying the list and calling {@link Collections#sort(List)}.
|
||
|
*/
|
||
|
public <E extends T> List<E> sortedCopy(Iterable<E> elements) {
|
||
|
@SuppressWarnings("unchecked") // does not escape, and contains only E's
|
||
|
E[] array = (E[]) Iterables.toArray(elements);
|
||
|
Arrays.sort(array, this);
|
||
|
return Lists.newArrayList(Arrays.asList(array));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an <b>immutable</b> list containing {@code elements} sorted by this
|
||
|
* ordering. The input is not modified.
|
||
|
*
|
||
|
* <p>
|
||
|
* Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
|
||
|
* elements that are duplicates according to the comparator. The sort performed
|
||
|
* is <i>stable</i>, meaning that such elements will appear in the returned list
|
||
|
* in the same order they appeared in {@code elements}.
|
||
|
*
|
||
|
* <p>
|
||
|
* <b>Performance note:</b> According to our benchmarking on Open JDK 7, this
|
||
|
* method is the most efficient way to make a sorted copy of a collection.
|
||
|
*
|
||
|
* @throws NullPointerException if any of {@code elements} (or {@code
|
||
|
* elements} itself) is null
|
||
|
* @since 3.0
|
||
|
*/
|
||
|
public <E extends T> ImmutableList<E> immutableSortedCopy(Iterable<E> elements) {
|
||
|
@SuppressWarnings("unchecked") // we'll only ever have E's in here
|
||
|
E[] array = (E[]) Iterables.toArray(elements);
|
||
|
for (E e : array) {
|
||
|
checkNotNull(e);
|
||
|
}
|
||
|
Arrays.sort(array, this);
|
||
|
return ImmutableList.asImmutableList(array);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if each element in {@code iterable} after the first is
|
||
|
* greater than or equal to the element that preceded it, according to this
|
||
|
* ordering. Note that this is always true when the iterable has fewer than two
|
||
|
* elements.
|
||
|
*/
|
||
|
public boolean isOrdered(Iterable<? extends T> iterable) {
|
||
|
Iterator<? extends T> it = iterable.iterator();
|
||
|
if (it.hasNext()) {
|
||
|
T prev = it.next();
|
||
|
while (it.hasNext()) {
|
||
|
T next = it.next();
|
||
|
if (compare(prev, next) > 0) {
|
||
|
return false;
|
||
|
}
|
||
|
prev = next;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if each element in {@code iterable} after the first is
|
||
|
* <i>strictly</i> greater than the element that preceded it, according to this
|
||
|
* ordering. Note that this is always true when the iterable has fewer than two
|
||
|
* elements.
|
||
|
*/
|
||
|
public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
|
||
|
Iterator<? extends T> it = iterable.iterator();
|
||
|
if (it.hasNext()) {
|
||
|
T prev = it.next();
|
||
|
while (it.hasNext()) {
|
||
|
T next = it.next();
|
||
|
if (compare(prev, next) >= 0) {
|
||
|
return false;
|
||
|
}
|
||
|
prev = next;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* {@link Collections#binarySearch(List, Object, Comparator) Searches}
|
||
|
* {@code sortedList} for {@code key} using the binary search algorithm. The
|
||
|
* list must be sorted using this ordering.
|
||
|
*
|
||
|
* @param sortedList the list to be searched
|
||
|
* @param key the key to be searched for
|
||
|
*/
|
||
|
public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
|
||
|
return Collections.binarySearch(sortedList, key, this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Exception thrown by a {@link Ordering#explicit(List)} or
|
||
|
* {@link Ordering#explicit(Object, Object[])} comparator when comparing a value
|
||
|
* outside the set of values it can compare. Extending
|
||
|
* {@link ClassCastException} may seem odd, but it is required.
|
||
|
*/
|
||
|
// TODO(kevinb): make this public, document it right
|
||
|
@VisibleForTesting
|
||
|
static class IncomparableValueException extends ClassCastException {
|
||
|
final Object value;
|
||
|
|
||
|
IncomparableValueException(Object value) {
|
||
|
super("Cannot compare value: " + value);
|
||
|
this.value = value;
|
||
|
}
|
||
|
|
||
|
private static final long serialVersionUID = 0;
|
||
|
}
|
||
|
|
||
|
// Never make these public
|
||
|
static final int LEFT_IS_GREATER = 1;
|
||
|
static final int RIGHT_IS_GREATER = -1;
|
||
|
}
|